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Do objects in working memory compete

with objects in perception?

Hang Zhang, Yuming Xuan, and Xiaolan Fu

State Key Laboratory of Brain and Cognitive Science, Institute of Psychology,

Chinese Academy of Sciences, Beijing, China

Zenon W. Pylyshyn

Rutgers Centre for Cognitive Science, Rutgers University, New Brunswick,

NJ, USA

It is generally assumed that ‘‘perceptual object’’ is the basic unit for processing
visual information and that only a small number of objects can be either
perceptually selected or encoded in working memory (WM) at one time. This
raises the question whether the same resource is used when objects are selected and
tracked as when they are held in WM. In two experiments, we measured dual-task
interference between a memory task and a Multiple Object Tracking task. The WM
tasks involve explicit, implicit, or no spatial processing. Our results suggest there is
no resource competition between working memory and perceptual selection except
when the WM task requires encoding spatial properties.

Keywords: Visual working memory; Object; Multiple object tracking; Dual-task

interference.

It has been assumed that object is the basic unit for people to organize the

everyday scenes (Kahneman, Treisman, & Gibbs, 1992; Pylyshyn, 1989;

Wolfe & Bennett, 1997; Yantis & Johnson, 1990; see Scholl, 2001, for a

review). The representation of an object persists when the object moves or

changes, which is essential to our understanding of dynamic scenes. For

example, to judge whether a car has violated the traffic rules, a traffic
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policeman has to identify the car as the same object after it moves. On the

other hand, only a certain number of objects can be represented at a time.

The ability to preserve objects is thus an important constraint on visual

cognition. The present study was motivated by an interest in the nature of
this ability.

One of the first theories to provide an account of perceptual objecthood is

that of Kahneman et al.’s (1992). That theory, called Object File Theory,

focuses on the objects whose properties have encoded and entered into

working memory (WM). Object files are defined as temporary episodic

tokens that may be empty or may contain the current description (e.g.,

location, orientation, and distance) of real objects around us. They parse the

world, mediate the representation of novel objects or multiple identical
objects, and serve as vehicles to bind features. The persistence of object files

over time and space was demonstrated by a priming methodology. Naming

an object was shown to be faster when the same object was viewed earlier at

a different position (Kahneman et al., 1992), thus showing that priming

tends to remain with a particular object rather than a particular location.

More recent studies have shown that priming stays with moving objects even

when the interval between preview and naming is as long as 8 s (Noles,

Scholl, & Mitroff, 2005) and when several objects are primed and tracked in
a Multiple Object Tracking (MOT) paradigm (Haladjian & Pylyshyn, 2008).

Our capacity to hold information in object files is limited in terms of the

number of objects, as reflected by the capacity of visual WM. The limit

appears to be about four objects, no matter whether the objects have one

relevant feature (colour), or two (colour and orientation), or even four

(colour, orientation, length, and a gap in the line) (Luck & Vogel, 1997). But

more recent evidences suggest that Visual WM capacity is determined both

by a fixed number of objects and by object complexity (Alvarez & Cavanagh
2004; Xu & Chun, 2006).

Another object-based theory, Pylyshyn’s visual index theory is concerned

with individuating and keeping track of perceptual objects (Pylyshyn, 1989,

2001, 2007). It assumes that at the preattentive stage of visual perception a

small number of objects are individuated and selected. A unique index is

assigned to each object up to the maximum number of indexes available

(about four) and sticks with the object as the object moves or changes

properties so that only the object’s individuality is relevant to the function of
the index. The theory claims that the index itself does not include description

of the real object but can be used to facilitate subsequent access to the

object. The multiple object tracking (MOT) paradigm in which subjects

must keep track of several target objects that move unpredictably among a

set of (identical) nontargets, was introduced as a direct test of this indexing

ability (Pylyshyn & Storm, 1988). In the basic procedure of MOT, the subset

of objects that have to be tracked (called the targets) are indicated at the start
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of each trial by flashing them a few times. Then all objects move randomly

for some fixed period of time*typically 5�10 s. When they stop, participants

must either indicate which ones were the targets (using a computer mouse)

or, in some experiments, must indicate whether a particular object (e.g., one
that is flashed at the end of the trial) was a target. Because all the objects

have the same appearance during the tracking period, the only way

participants can identify targets is by their continuous history or trajectory.

Generally only about four objects can be correctly tracked (Pylyshyn, 2001,

2003; Pylyshyn & Storm, 1988; Yantis, 1992).

Cowan (2001) claimed that the number of objects that the focus of

attention can cover is about four, whether the objects are in WM or in

perception. In commenting on Cowan’s target article, Davis (2001) and
Rensink (2001) raised the question of whether objects in WM and objects

being tracked compete for the same cognitive resources. Although what

exactly constitutes a resource is not generally specified, it is assumed that

when a limited resource is accessed by one task there is less available to

another task that uses the same resource. In the case of a memory resource

one might think of a resource as something like the number of slots in a

memory bank that get used by certain tasks. In our case this presumably

means the number of object-specific items of information that can be stored
or the number of available object files.

The question of whether a particular resource is used by two different

tasks is typically studied by measuring dual task interference. If performance

on one of the tasks is not impaired by the simultaneous execution of a

second task, this would suggest that the two tasks do not use the same

resource. For example, no decrement in performance is observed when a

search task (Alvarez, Horowitz, Arsenio, DiMase, & Wolfe, 2005) or a

monitoring task (Leonard & Pylyshyn, 2003) are carried out at the same
time as an MOT task, nor is there a decrement when two MOT tasks are

carried out simultaneously in different hemifields (Alvarez & Cavanagh,

2005). Such findings are consistent with these pairs of tasks using distinct

resources. In the present study we examine the question whether MOT and a

memory task can be carried out without performance decrement.

Visual Index theory assumes that tracking is carried out directly by an

index mechanism in early vision and not by a process that involves matching

perceptual information with information stored in memory. Although
information about objects can eventually be stored in object files, the

assumption is that such information is not present initially and even if it is, is

not used in tracking. According to the theory, indexes stick to objects

independently of what properties, if any, are encoded in the object files.

Thus, Visual Index theory predicts that memory resources, such as those

provided by short-term memory, are not used in cases of ‘‘pure’’ tracking*
i.e., in tasks like MOT that do not require recall of object properties.
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Using a dual-task MOT-Memory method, Fougnie and Marois (2006)

asked participants to perform MOT while holding colours and locations of

coloured patches in WM and examined the dual-task interference. Partici-

pants memorized the colours and locations of briefly presented circles and

then performed an MOT task. At the end of each trial, participants

responded to the WM task first and then the MOT task. They found that

when one tracks more targets, recognition performance is worse, or in other

words, fewer objects can be stored. Nevertheless, this effect is dispropor-

tional in MOT and WM. When the number of objects being tracked

increases by 1, the number of objects that can be stored drops by only 0.5.

This drop in WM is also smaller than that caused by a second WM task.

Although there is evidence for some overlap in cognitive resources

between the capacity of WM and the number of objects that can be

perceptually individuated and tracked this overlap is relatively small.

Moreover, at least four lines of analyses suggest that this overlap may only

arise under special conditions.

First, object files (objects in WM) and indices (objects selected in

perception) carry different type of information. Object files may store

various visual and spatial features of objects, such as colour, orientation, and

location (Treisman, 2006). In contrast, indices only select and refer to

individual objects (Pylyshyn, 2007)*although some writers have proposed

that in some cases there may be a compulsory encoding of location in the

associated object files (Fencsik, Klieger, & Horowitz, 2007; Keane &

Pylyshyn, 2006; Suganuma & Yokosawa, 2006). But perceptual information

does not appear to be routinely encoded. When one of the objects being

tracked changes its colour or shape occasionally, this change is rarely noticed

(Bahrami, 2003), nor are observers able to report these features at better

than chance level (Scholl, Pylyshyn, & Franconeri, 1999).

Second, there is evidence that the number of objects is not the only

constraint on visual WM, so the correlation or competition between objects

in WM and in perception may actually come from other constraints rather

than limits to the memory capacity for objects. Wheeler and Treisman (2002)

found that the number of features on a dimension is also a constraint on

visual WM, allowing for resource competition based on features themselves.

In contrast with Luck and Vogel’s (1997) findings, Delvenne and Bruyer

(2004) found that when half of the objects are defined by shape and the other

half are defined by texture, the recognition performance of visual WM is

better than when all the objects are defined by shape or texture. The

maximum number of features can range from 1.6 to 4.4 objects, depending

on stimuli types (Alvarez & Cavanagh, 2004). Yet it seems that the limit on

MOT is confined to the number of objects tracked since the visual properties

of individual objects do not appear to be encoded at all.
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Third, if there were common cognitive resources for objects in WM and in

perception we would expect a general dual-task interference, but many

studies have shown that selective interference of perception in WM occurs

only when both WM and perception tasks are visual or spatial (Della Sala,

Gray, Baddeley, Allamano, & Wilson, 1999; Hecker & Mapperson, 1997;

Quinn & McConnell, 1996). For example, in Klauer and Zhao’s (2004) study,

memorizing a Chinese ideograph was impaired by the concurrent task of

finding a stationary asterisk among 12 moving asterisks but not by the task of

deciding whether a colour belonged to the red family or the blue family. For

memorizing a dot location, the interference pattern was the reverse. Also

Olivers, Meijer, and Theeuwes (2006) have recently shown the reverse case:

Visual WM content interferes with attentional capture in a content-specific

manner. There are also many other studies that fail to show a dual-task

interference when the nontracking task was not spatial (Alvarez et al., 2005;

Leonard & Pylyshyn, 2003).

Fourth, the influence of WM load on perceptual tasks also appears to be

confined to tasks that involve spatial properties. Keeping two or four

positions in WM during a visual search slows down the search (Oh & Kim,

2004; Woodman & Luck, 2004), whereas retaining four shapes has no

influence on the search, although such a visual WM task is difficult

(Woodman, Vogel, & Luck, 2001).

Such considerations suggest that objects in WM and objects being

tracked in MOT might have no significant resource overlap. It may be that

the weak relation or interference, found by Fougnie and Marois (2006) arise

because both the WM task and the perception task in these studies involve

spatial processing. In the present study, we test this possibility by examining

the dual-task interference between WM and MOT when the WM task is

nonspatial.

EXPERIMENT 1: THE DUAL-TASK INTERFERENCE
OF NONSPATIAL WM AND MOT

A visual WM task usually requires maintaining features of several visual

items. When location is among the features to be remembered, the task

would involve spatial processing. In the present paper, such a task is called a

spatial WM task, and a visual WM task for nonspatial features is called a

nonspatial WM task. The purpose of Experiment 1 was to compare the

dual-task interference between nonspatial WM and MOT with that between

spatial WM and MOT. As illustrated in Figure 1, participants were asked to

remember colour-shape bindings of coloured patches or colour-location

bindings of coloured squares. During the retention interval, they performed
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an MOT task. Dual-task interferences were estimated as the difference of

performances in such tasks and the corresponding single-task baselines.

Colour-shape conjunctions were used as WM material because it would

make our results comparable to those of Fougnie and Marois (2006), where

similar stimuli were used. In addition it has been shown in many studies that

recall and recognition of conjunctions is more difficult (more attentive or

resource-demanding) than recall or single features (e.g., Delvenne & Bruyer,

2004; Postma & de Haan, 1996; Wheeler & Treisman, 2002; for counter-

arguments, see Brockmole, Parra, Della Sala, & Logie, 2008; Luck & Vogel,

1997; Vogel, Woodman, & Luck, 2001).
If the weak interference, found by Fougnie and Marois (2006), arises

because both the WM task and the tracking task involve spatial processing,

such interference effects should only be observed in the colour-location

condition but not in the colour-shape condition.

Method

Participants

Fourteen paid participants, 17�24 years of age, were tested. All

participants reported normal or corrected-to-normal vision and normal

colour vision.

Stimuli

The display was presented on a PC with a 17-inch CRT monitor and was

controlled by E-Prime experimental software (Schneider, Eschman, &

Zuccolotto, 2002). The viewing distance was about 60 cm. The background

Colour-Shape

Colour-Location

500 ms 500 ms 8500 ms Until Response

Probe DisplayBlankSample Display Sample Display

Figure 1. Time course of the WM-MOT task used in Experiment 1. Each different fill pattern

represents a different solid colour.
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was white and the fixation point was a black cross subtending 0.68 in the

centre of the screen.
Each item in the WM tasks subtended 1.08. In the colour-location

condition, the sample display consisted of two or four coloured squares. For

each trial, the colours and locations of the items were separately selected at

random. The colours were selected from seven preset colours. The locations

were selected from a set of seven locations and the selection of each was

made without replacement. The colours (and RGB values) were red (255, 0,

0), green (0, 255, 0), yellow (255, 255, 0), blue (0, 0, 255), cyan (0, 255, 255),

saddle brown (128, 64, 0), and magenta (255, 0, 255). The locations were 2.98
from the fixation cross and equally spaced on an imaginary circle. The probe

display was a single square whose colour and location was drawn from one

item or separately from two items in the sample display.

In the colour-shape condition, the initial display consisted of two or four

coloured patches, which occupied either the left two or all four vertexes of an

imaginary square and were 1.68 from the fixation cross. The colours and

shapes of the items were randomly selected without replacement from seven

colours identical to those in the colour-location condition, and seven shapes

as shown in Figure 2. The probe display was a centred coloured patch whose

colour and shape corresponded to that of one item or to two different items

in the sample display.
Objects of the MOT task were black disks. Each disk subtended 0.58.

There were eight disks and three of them were targets. Disks were scattered

in a 15.38�11.58 area around the fixation cross. The initial location of the

disks was randomly selected. Each disk moved with a certain velocity and

direction for a random duration averaged 500 ms, and then changed its

velocity and direction unpredictably. The velocities varied from 88/s to 128/s.
The disks bounced away from area borders, from the fixation cross, and

from each other. The distance between the centres of the disks was never less

than 1.08.

Procedure

There were three experimental conditions: Single-task of MOT (MOT-

only), single-task of WM (WM-only), and dual-task of WM and MOT

(WM-MOT).

Figure 2. The seven shapes used in Experiment 1.
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MOT-only. At the start of a trial, eight identical disks appeared on the

screen and three of them flashed for 1500 ms to indicate that they were the

targets. Then all disks began to move and kept moving for 4000 ms. When

they stopped, one disk expanded to a larger size. On 50% of the trials, this
disk was among the three that had flashed (the targets). Participants were

required to indicate whether this disk was one of the targets and they then

made an unspeeded ‘‘yes’’ or ‘‘no’’ response, respectively by pressing ‘‘f ’’ or

‘‘j’’. The probe display would not disappear until a response had been made

or 3000 ms had passed.

WM-only. The sample display was presented for 500 ms, followed by a

retention period of 9000 ms. Then the probe display was presented and kept
visible until response. In the colour-location condition, participants were

instructed to memorize the colours and locations of the items in the sample

display; in the colour-shape condition, participants were instructed to

memorize the colours and shapes of the items. The memory set size was

either two or four. On 50% of the trials, the probe item was one of the sample

items; on the other 50% of the trials, the probe item was a combination of

two sample items. Participants were asked to decide whether the probe item

had occurred in the sample display and make an unspeeded ‘‘yes’’ or ‘‘no’’
response respectively by pressing ‘‘f ’’ or ‘‘j’’.

During the 9000 ms retention period, a blank screen was displayed in the

first 500 ms and then the display was just like that in MOT-only condition

except that the probe display lasted for 3000 ms. Participants were told to

view the screen but ignore the moving disks.

WM-MOT. The procedure of WM-MOT resembled that of WM-only.

The only difference was that participants were asked to perform MOT
during the retention period of WM. After participants had made their

response for the MOT task, a blank screen was used to fill up the remaining

time of the 9000 ms retention period.

Each trial began with a fixation cross at the centre of the screen for 1000

ms. The intertrial interval was a random value between 2500 and 3500 ms.

To prevent the possible phonological rehearsal of visual or spatial informa-

tion, participants were required to repeat saying ‘‘1, 2, 3, 4’’ in Chinese

throughout a trial in all trials.
There were five types of task: (1) MOT-only, (2) colour-location WM-

only, (3) colour-location WM-MOT, (4) colour-shape WM-only, and (5)

colour-shape WM-MOT. The five tasks were each presented in a block and

the latter four were presented with two different WM set size (two or four).

Overall there were nine conditions, each of which was repeated 16 times.

Trials within a block were randomized for each participant and the sequence

of the blocks was counterbalanced across participants. Before each block,
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there were five practice trials. Each participant completed all the 169 trials in

a 50-minute session.

Results

To correct for guessing, effective number of objects tracked (m) was

computed as the measure of MOT performance and number of conjunctions
remembered (K) as the measure of WM performance. The concept of

effective number of objects tracked, which was used in Scholl, Pylyshyn, and

Feldman (2000), and Pylyshyn and Annan (2006), refers to the number of

targets actually tracked in an MOT task, with the assumption that

participants track m of n targets and guess on the others. Our method of

computing m is based on the hit rate (H, proportion correct when a target is

probed) and the correct rejection rate (CR, proportion correct when a

distractor is probed) of MOT:

m�n
H � CR � 1

CR

(see Appendix A for complete proof).

For WM of feature conjunctions, we assume that a participant remember

K conjunctions out of an array of N conjunctions. If at least one of the

features of the probe is contained in the K conjunctions, she or he can make

a correct response, otherwise make a guess (that’s because each colour and

each location occurs only once in a trial). For instance, if a participant
remembers red-triangles and cyan-hexagon, when the probe is a red-

diamond, she or he knows the probe is a new conjunction. Assuming H is

the hit rate (proportion correct when the probe is an old conjunction) and

CR is the correct rejection rate (proportion correct when the probe is a new

conjunction)

K�
N�H � N � 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N+H � N � 1)2 � 4�N�(N � 1)�(H � CR � 1)

p
2

(see Appendix B for complete proof).
As our interest was in the dual-task interference between MOT and WM,

our statistics focused on dual-task cost, the difference between the

performance of MOT or WM in the single task and that in the dual task.

What concerned us was whether the dual-task costs varied with conditions

and whether the dual-task costs were different from zero. An alpha level of

.05 was used as the criterion for a significant difference for all statistical tests

in this paper.
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MOT

The mean effective number of objects tracked in the single-task condition

and in each memory load condition is plotted in Figure 3. The dual-task

costs of MOT were obtained by subtracting the effective number of objects

tracked in the dual-task conditions from the effective number of objects

tracked in the single-task condition. According to a 2 (WM material:

Colour-location, colour-shape)�2 (set size of WM: Two, four) repeated

measures ANOVA, WM material and set size of WM had no effects on the

dual-task costs of MOT. We then collapsed the dual-task costs of MOT in

these conditions and conducted a Bonferroni corrected t-test on the mean.

The mean was not statistically different from zero, which meant that the

performance of MOT was not influenced by WM load.

WM

The mean number of conjunctions remembered in the single-task and

dual-task for each memory condition is plotted in Figure 4. Similar to the

dual-task costs of MOT, dual-task costs of WM were obtained by

subtracting the number of conjunctions remembered in the dual-task

conditions from the number of conjunctions remembered in the single-task

conditions. A 2 (WM material: Colour-location, colour-shape)�2 (set size

of WM: Two, four) repeated-measures ANOVA analysis revealed that WM

0.0

1.0

2.0

3.0

Single-
Task

CL CS CL CS

Two Four

N
um

be
r 

of
 T

ra
ck

ed

Figure 3. Mean effective number of objects tracked for the single-task and dual-task conditions of

Experiment 1, with the latter as a function of WM material (colour-location or colour-shape) and set

size of WM (two or four). Colour-location is abbreviated as CL and colour-shape as CS. Error bars

show standard errors.
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material had a significant effect on the dual-task cost of WM, F(1, 13)�
17.16, pB.01, and that WM material and set size of WM had an interaction,

F(1, 13)�15.77, pB.01. So we did t-tests separately on each condition to

examine whether the dual-task cost in that condition was different from

zero. The dual-task costs of WM in the colour-location condition at set size

two and four were significantly above zero, t(13)�2.83, pB.01, and t(13)�
4.16, pB.01, respectively, whereas the dual-task costs of WM in the colour-

shape condition at set size two and four were not different from zero.

To be sure that the effect of WM material on the dual-task cost of WM

was not due to the difference between the baselines of these two kinds of

materials, we carried out a 2 (WM material: Colour-location, colour-

shape)�2 (set size of WM: Two, four) repeated measures ANOVA analysis

on the number of conjunctions remembered in single-task conditions. The

main effect of WM, the main effect of set size of WM, and the interaction

were significant, F(1, 13)�8.25, p�.01, F(1, 13)�8.52, p�.01, and

F(1, 13)�8.96, p�.01, respectively. A further simple effect analysis showed

that memories for colour-location and colour-shape were significantly

different at set size four (memories for colour-location were better than

those for colour-shape), but were similar at set size two.

To rule out the effect of different baseline performances, a relative dual-

task cost of WM (Kr) was computed as:

0.0

1.0

2.0

3.0

CL CS CL CS

Two Four

N
um

be
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of
 R
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em
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Figure 4. Mean number of conjunctions remembered, for the single-task and dual-task conditions of

Experiment 1, as a function of WM material (colour-location or colour-shape) and set size of WM

(two or four). Colour-location is abbreviated as CL and colour-shape as CS. Error bars show standard

errors.
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Kr�
Ksingle task � Kdual task

Ksingle task

Then a 2 (WM material: Colour-location, colour-shape)�2 (set size of WM:

Two, four) repeated measures ANOVA analysis on Kr was conducted.

Results showed that the main effect of WM material was significant,

F(1, 13)�8.04, p�.014, thus indicating the dual-task cost of WM in the

colour-location condition (mean Kr�.49) was greater than that in the
colour-shape condition (mean Kr� .08); other effects were not significant.

Again, we did t-tests separately on each condition to examine whether the

relative dual-task cost (Kr) in that condition was different from zero. The

dual-task costs of WM in the colour-location condition at set size two and

four were significantly above zero, t(13)�3.91, pB.01, and t(13)�6.83,

pB.01, respectively, whereas the dual-task costs of WM in the colour-shape

condition at set sizes two and four were not different from zero. Therefore,

after the correction for the baseline performances it is safe to conclude that
WM performance was impaired in the dual task condition only when the

content of the WM was spatially specific.

Discussion

As we expected, the dual-task interference between visual WM and MOT is

specific to spatial WM tasks. Parallel to that of Fougnie and Marois (2006),

we found that the performance of spatial WM is impaired by the concurrent

MOT task. But we also found that the maintenance of nonspatial WM is not

influenced by performing MOT (at least with a set size of 2). It has been

shown that spatial WM and nonspatial WM are impaired to the same extent
by random-number generation, which requires generation of a random

sequence of numbers between 1 and 10 and is supposed to demand on

general executive functions such as the inhibition of dominant responses and

information updating (Klauer & Zhao, 2004). Therefore, the disproportional

effect of MOT on spatial WM and nonspatial WM found in this experiment

suggests that a primarily spatial resource might be involved in performing

the MOT task, which is not consistent with the Visual Index theory. We

discuss this issue more in the General Discussion.
Besides, the performance of MOT does not become worse when WM is

occupied, nor does it decline as the memory load increases from two objects,

a modest load, to four objects, a severe load. If objects in WM and objects in

perception have one and the same limit, one would predict a competition

between the objects being tracked and the objects being remembered. Yet the

present results seem to indicate the dissociation between visual objects and

objects held in WM.

628 ZHANG ET AL.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
X
u
a
n
,
 
Y
u
m
i
n
g
]
 
A
t
:
 
1
4
:
2
2
 
2
3
 
M
a
r
c
h
 
2
0
1
0



The K index seemed quite low (as low as about one object) in Experiment

1. In fact, according to the computation equation, for perfect performance,

when H�CR�1, K�N�1. Thus, when the set size is 2, the maximum K is

1; and when the set size is 4, the maximum K is 3. Therefore the results of

Experiment 1 showed that participants’ performance were near perfect in the

condition of set size 2; and lower but still acceptable in the condition of set

size 4. According to Xu and Chun (2006), WM capacity is determined both

by a fixed number of objects and by object complexity. Previous studies

found K can be as low as 1.6 or even 1.4.

EXPERIMENT 2: THE ROLE OF IMPLICIT SPATIAL
PROCESSING IN THE DUAL-TASK INTERFERENCE

OF WM AND MOT

In Experiment 1 we observed that WM for colour-shape feature conjunc-

tions is not affected by MOT, whereas Fougnie and Marois (2006) found in

their Experiment 6 that WM for colours is impaired by MOT, which allowed

them to eliminate a domain-specific account of the dual-task interference.

Although memorizing colour-shape bindings and memorizing colours are

not the same thing, this inconsistency cannot be predicted from the existing

theories.
A comparison of the stimuli and procedures suggested that the difference

in the spatial layouts of the WM sample display might be the cause. In the

colour-shape condition of our Experiment 1, the locations of sample items

were fixed and more centred. A sample item appeared 1.68 from the fixation

point and 2.38 from its neighbour. In contrast, in their Experiment 6, the

locations of sample items varied from trial to trial and were more peripheral.

The locations were randomly selected from six possible locations that were

3.38 from the fixation cross and equally spaced on an imaginary circle. As

automatic encoding or representation of spatial information is frequently

reported in behavioural and neuroimaging studies (Coull & Frith, 1998;

Epstein & Kanwisher, 1999; Lu & Proctor, 1994; Meegan & Honsberger,

2005), it is possible that different types of spatial layouts lead to different

amounts of automatic encoding or representation of spatial information and

finally different interference patterns.

To test this possibility directly, in Experiment 2 we introduced spatial

layout of WM sample display as an independent variable, which had two

levels. One level was identical to that of the colour-shape condition of

Experiment 1 and the other was the same as that of Experiment 6 of

Fougnie and Marois (2006), namely, the centred condition and the

dispersed condition. Another independent variable of Experiment 2 was

number of targets in MOT. We hypothesized that the spatial information
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in the centred condition would be far less processed than that in the

dispersed condition because locations of the stimuli in the centred

condition were fixed, whereas those in the dispersed condition were

randomly selected.

Method

Participants

Twenty-eight paid participants, 19�25 years of age, were tested. All

reported normal or corrected-to-normal vision and normal colour vision.

None of them had participated in Experiment 1. Fourteen of them were

randomly assigned to the centred condition and the other fourteen to the

dispersed condition.

Stimuli

The MOT displays in Experiment 2 were identical to those in Experiment 1

except that the number of targets could be one, two, or four.
Each item in the WM tasks subtended 1.08. The sample display was three

coloured squares. To match the difficulty of our colour memory tasks with

that of Fougnie and Marois (2006), we used 10 candidate colours. Seven of

these were the colours used in Experiment 1 and the three new (and RGB

values) were blue violet (128, 0, 255), orange (255, 128, 0), and olive (128,

128, 64). The colours of the items were randomly selected without

replacement from these colours. The spatial settings of sample displays are

illustrated in Figure 5. For the centred group, coloured squares appeared at

three fixed locations 1.68 from the fixation cross. For the dispersed group,

Figure 5. Sample displays used in Experiment 2. Each different fill pattern represents a different

solid colour. For the centred group (the left panel), three squares are at three fixed locations near the

fixation cross. For the dispersed group (the right panel), three squares are at three randomly selected

locations. The light grey squares without fill patterns represent other possible locations and are

invisible in the real display.
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colour squares appeared at three randomly selected locations among six

possible ones, which were 3.48 from the fixation cross and dispersed equally

on an imaginary circle. The probe display was a single colour square at the

centre of the screen.

Procedure

Like Experiment 1, there were three kinds of tasks, MOT-only, WM-only,
and WM-MOT.

MOT-only. The procedure was the same as that of Experiment 1 except

that the number of targets could be one, two, or four.

WM-only and WM-MOT. The basic procedures were like those of

Experiment 1 with the following exceptions. The WM task was to remember

colours of squares and subsequently decide whether the probe colour had
occurred before. The timings were adjusted to match those of Fougnie and

Marois (2006), with the WM sample display lasting for 400 ms and followed

by a 1200 ms blank.

Similar to Experiment 1, articulatory suppression was used to prevent the

phonological rehearsal in WM.

Each participant was allocated to either the centred group or the

dispersed group and completed three blocks of tasks, i.e., MOT-only,

WM-only, WM-MOT. Number of targets in MOT (one, two, or four) was
intermixed within blocks. Each condition was repeated for 16 times. Trials

within a block were randomized for each participant and the sequence of the

blocks was counterbalanced across participants. Before each block, there

were five practice trials. Each participant completed all the 127 trials in a

40-minute session.

Results

As in Experiment 1, effective number of objects tracked (m) was computed

as the measure of MOT performance to correct for guessing. For WM,

number of colours remembered (K) was computed with the method

developed by Pashler (1987). The method assumes that if a participant
holds K colours in memory out of an array of N colours, then when the

probe is an old colour, in K/N of the trials, the participant can recognize it

and in the rest of the trials, the participant cannot recognize it but makes a

false alarm (yes response). These response rates are governed by the relation

K�N
H � F

1 � F
;
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where N is the set size of colours, H is the hit rate when the probe is

an old colour, and F is the false alarm rate when the probe is a new

colour.

MOT

The mean effective number of objects tracked in the single-task and dual-

task conditions is plotted in Figure 6 as a function of layout group and

number of targets. The dual-task costs of MOT were obtained for each group

by subtracting the effective number of objects tracked in the dual-task

conditions from the effective number of objects tracked in the single-task

conditions. A 2 (layout group: Centred, dispersed)�3 (number of targets:

One, two, four) mixed-design ANOVA analysis on the tracking performance

data showed that no main effects or interaction were significant. The mean

dual-task cost of MOT collapsed across all the conditions was not different

from zero, suggesting that the performance of MOT was not impaired by the

memory load.

WM

The mean number of colours remembered at each MOT load in each

layout group condition is plotted in Figure 7. Dual-task costs of WM were

obtained for each group by subtracting the number of colours remembered

in the dual-task conditions from the number of colours remembered in the

single-task condition. The dual-task costs of WM were submitted to a 2

(layout group: Centred, dispersed)�3 (number of targets: One, two, four)

mixed-design ANOVA analysis. The interaction was significant, F(2, 52)�

0.0
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Figure 6. Mean effective number of objects tracked for the single-task and dual-task conditions of

Experiment 2, as a function of layout group (centred or dispersed) and number of targets (one, two, or

four). Error bars show standard errors.
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4.70, p�.01. No main effects were significant. Simple effect analysis

revealed that number of targets had no effect on the centred group, but

had a significant effect on the dispersed group, F(2, 26)�7.75, pB.01.

According to a post hoc comparison, for the dispersed group, tracking two

or four targets impaired WM to a larger extent than tracking one target did.
To preclude the effect of baseline differences, we compared the baseline

WM scores of the centred group (mean�2.12) and the dispersed group

(mean�2.25) by a t-test and found no significant differences.

Discussion

The results of Experiment 2 confirm our speculation that the spatial layout

difference in WM sample displays is the cause of the inconsistency between

our Experiment 1 and Experiment 6 of Fougnie and Marois (2006). The

WM of the dispersed group but not that of the centred group is subject to

MOT interference. Therefore, it is tenable to conclude that the maintenance

of nonspatial WM is not influenced by performing MOT.

This difference between the two layout conditions may be an effect of

automatic representation of spatial information, which is consistent with

several recent studies (Hollingworth, 2007; Treisman & Zhang, 2006). It has

long been known that task-irrelevant spatial information can be automati-

cally represented, as shown by the compatibility effect of the spatial property

of a stimulus and its response (Lu & Proctor, 1994), or by the effect of WM

for shapes on the pattern of eye movements, in which where the shapes

originally appeared makes a difference (Meegan & Honsberger, 2005). In the

centred condition, the sample colours stay at the same locations in each trial,

which may lead participants to neglect the spatial properties of them. In

0.0
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Figure 7. Mean number of colours remembered of Experiment 2, as a function of layout group

(centred or dispersed) and MOT load (single-task, one target, two targets, or four targets). Error bars

show standard errors.
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contrast, in the dispersed condition the locations of the sample colours vary

with trials, which may be noticed and induce a representation of colours

based on locations. When the memory of locations is disrupted by MOT, the

representation of colours accompanied with locations is also impaired. In

this way, only the retention of the dispersed condition but not that of the

centred condition is subject to MOT. Another possible explanation is that

the items in the dispersed condition cannot be so richly processed as those in

the centred condition, for the attentional resolution drops rapidly with

eccentricity (Intriligator & Cavanagh, 2001), or for the density of processing

resources decreases as the size of the attentional field increases (Eriksen &

St. James, 1986), and thus are more difficult to enter WM. A third possibility

is that maintaining colours is more resource demanding in the dispersed

condition than in the centred condition, and therefore the WM in the

dispersed condition is more fragile in the face of interference. The latter two

possibilities can be excluded by the fact that single-task memory perfor-

mances of the two layout conditions are alike but far from perfect.

GENERAL DISCUSSION

In the present study, with a WM-MOT dual task paradigm, we found that

spatial WM but not nonspatial WM is impaired by MOT and task-irrelevant

spatial factors can determine whether WM is susceptible to interference by a

concurrent MOT task. To be more specific, in Experiment 1, WM of colour-

location conjunction but not of colour-shape conjunction was showed to be

impaired by a concurrent MOT task; in Experiment 2, WM for coloured

patches were demonstrated to be unaffected by MOT when their locations

were fixed and constrained in a more compact layout. Furthermore,

participants’ performances of the MOT task seemed to be insensitive to

WM load, no matter it is empty or full. These results imply that objects in

WM and objects that are selected in MOT do not compete for the same

cognitive resources in a general sense, demonstrating that previous evidences

favouring a common object-based resource for visual WM and perception

might be contaminated by spatially specific effects.

One’s experience in doing the MOT task leaves the clear impression that

MOT is attentionally demanding and effortful (e.g., Culham et al., 1998; He,

Cavanagh, & Intriligator, 1997; Scholl, 2001; Yantis, 1992). Yet Pylyshyn’s

visual index theory (1989, 2001, 2003, 2007) assumes that the mechanism

underlying tracking is automatic and preattentive. According to the theory

the indexes automatically remain attached to each selected individual target.

Thus, at this stage memory load would have no effect on the MOT

performance, even though it might have an effect at a subsequent stage of

using the indexes to generate a judgement and make a response.

634 ZHANG ET AL.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
X
u
a
n
,
 
Y
u
m
i
n
g
]
 
A
t
:
 
1
4
:
2
2
 
2
3
 
M
a
r
c
h
 
2
0
1
0



The present finding that a WM task does not impair MOT is consistent

with the Visual Index theory, yet the theory does not predict the

unidirectional interference of the MOT task on the WM task nor does it

naturally explain the fact that this interference is confined to spatial
information. We suggest the unidirectional interference may be due to the

insensitivity nature of the MOT task to a secondary task and the specificity

of the spatial interference may result from the spatial property in the

response stage of the MOT task.

The insensitivity of MOT performance to interference has also been

reported in other studies. For example, no decrement in performance is

observed when a search task (Alvarez et al., 2005) or a monitoring task

(Leonard & Pylyshyn, 2003) are carried out at the same time as an MOT
task. A series of studies by Zhang (2008) also showed that spatial memory

load had no effects on the MOT performance but the reverse did not hold,

i.e., spatial memory was impaired when the number of targets that had to be

tracked was increased. Using a similar procedure as the present study, Zhang

examined the dual-task interference between a Corsi Blocks Task (CBT) and

an MOT task. Even when up to six serial positions had to be held in WM,

the concurrent MOT performance remained consistent. In six of the seven

experiments, the unidirectional interference effect of the MOT task was
replicated.

It should be noted that in the present study and in Zhang (2008),

participants made the MOT response before the WM response. When two

tasks share a common resource, and one task (the interpolated task) occurs

during the execution of another task (the background task), evidence

suggests that the background task is more likely to be impaired (Sigman &

Dehaene, 2006).

Note that Leonard, Pylyshyn, Dennis, and Cohen (2002) reported that a
secondary task of monitoring a colour change in stationary objects

interfered with MOT performance (much as shown by Fougnie & Marois,

2006). But then in a subsequent study (Leonard & Pylyshyn, 2003), it was

shown that this only occurs if the monitoring task requires a response during

tracking, rather than after the tracking response had been made. Such an

asymmetry has been observed in other tasks as well (Jolicoeur, 1999) and

points to a general finding that making a response may be more disruptive

than the task itself. Thus, in our WM-MOT paradigm, when subjects
completed the MOT task and were waiting to make a response after the WM

task, the performance on the MOT task would be more likely to be

impaired. That was exactly the case in Fougnie and Marois (2006).

In order to judge correctly that a particular object in the MOT task is a

target, observers must focus attention on the cued object and also must have

selected all the targets in order to judge that the cued one is a target. This in

itself is a spatial task since in order to decide whether the object at {x,y} is

WM OBJECTS VS. PERCEPTUAL OBJECTS 635

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
X
u
a
n
,
 
Y
u
m
i
n
g
]
 
A
t
:
 
1
4
:
2
2
 
2
3
 
M
a
r
c
h
 
2
0
1
0



one of the targets the observer has to compare the cued objects with a

selected object. Consequently making a response in an MOT task logically

requires using the response-selection stage. The WM also requires both a

comparison operation as well as focusing on particular objects. This may
explain why there is an interference effect only when the WM requires taking

into account the location of symbols.

The present findings seem consistent with what has been found when

search and visual working memory tasks are combined. Searching through

objects does not interfere with working memory for objects but does for

location memory in a set size dependent manner (Oh & Kim, 2004;

Woodman & Luck, 2004; Woodman et al., 2001). Taken together, it seems

that objects kept in visual WM and visually selected perceptual objects are
not so closely linked by focus of attention as proposed by Cowan (2001),

their interactions appear to be mediated by the processing of spatial

information involved.
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APPENDIX A: COMPUTING THE EFFECTIVE NUMBER OF OBJECTS
TRACKED (M)

Let n�total number of targets, H�observed hit rate (proportion correct

when a target is probed), CR�observed correct rejection rate (proportion

correct when a distractor is probed), and m�number of targets that is

actually tracked.

Assume the following strategy: Track m objects, and guess on the others.
When an unknown object is probed, the observer has a probability of x to

identify it as a target.

Assuming this strategy,

H�
m

n
�x

�
1�

m

n

�

CR�1�x

Solving for m:

m�n
H � CR � 1

CR

Appendix B: COMPUTING THE NUMBER OF CONJUNCTIONS
REMEMBERED (K)

Let N�total number of conjunctions, H�observed hit rate (proportion

correct when the probe is an old conjunction, i.e., its two features are drawn

from the same item previously presented), CR�observed correct rejection
rate (proportion correct when the probe is a new conjunction, i.e., its two

features are drawn separately from two items), and K�number of

conjunctions that is actually remembered.

Assume the following strategy: The observer remembers K conjunctions,

that is, 2K features and the match between them. For a probe, when both of

the features are known, the observer recognizes the probe as an old or new
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conjunction; when one feature is known and the other is unknown, the

observer correctly identifies the probe as a new conjunction; when neither of

the features is known, suppose the observer has a probability of x to judge

the probe as an old conjunction.
Assuming this strategy, if the probe is an old conjunction,

H�
K

N
�x

�
1�

K

N

�

If the probe is a new conjunction, assume the observer has a proportion of

E to know at least one feature,

E�1�
C2

N�K

C2
N

�1�
(N � K)(N � K � 1)

N(N � 1)

CR�E�E(1�x)�1�x
(N � K)(N � K � 1)

N(N � 1)

Solving for K:

K�
N�H � N � 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N�H � N � 1)2 � 4�N�(N � 1)�(H � CR � 1)

p
2
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