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Although altruistic behaviors, e.g., sacrificing one’s own interests to alleviate others’ suffering, are widely observed in human soci-
ety, altruism varies greatly across individuals. Such individual differences in altruistic preference have been hypothesized to arise
from both individuals’ dispositional empathic concern for others’ welfare and context-specific cost-benefit integration processes.
However, how cost-benefit integration is implemented in the brain and how it is linked to empathy remain unclear. Here, we com-
bine a novel paradigm with the model-based functional magnetic resonance imaging (fMRI) approach to examine the neurocompu-
tational basis of altruistic behaviors. Thirty-seven adults (16 females) were tested. Modeling analyses suggest that individuals are
likely to integrate their own monetary costs with nonlinearly transformed recipients’ benefits. Neuroimaging results demonstrate
the involvement of an extended common currency system during decision-making by showing that selfish and other-regarding
motives were processed in dorsal anterior cingulate cortex (ACC) and right inferior parietal lobe in a domain-general manner.
Importantly, a functional dissociation of adjacent but different subregions within anterior insular cortex (aINS) was observed for
different subprocesses underlying altruistic behaviors. While dorsal aINS (daINS) and inferior frontal gyrus (IFG) were involved in
valuation of benefactors’ costs, ventral aINS and middle INS (vaINS/mINS), as empathy-related regions, reflected individual varia-
tions in valuating recipients’ benefits. Multivariate analyses further suggest that both vaINS/mINS and dorsolateral prefrontal cortex
(DLPFC) reflect individual variations in general altruistic preferences which account for both dispositional empathy and context-
specific other-regarding tendency. Together, these findings provide valuable insights into our understanding of psychological and
neurobiological basis of altruistic behaviors.
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Significance Statement

Altruistic behaviors play a crucial role in facilitating solidarity and development of human society, but the mechanisms of the
cost-benefit integration underlying these behaviors are still unclear. Using model-based neuroimaging approaches, we clarify
that people integrate personal costs and non-linearly transformed other’s benefits during altruistic decision-making and the
implementations of the integration processes are supported by an extended common currency neural network. Importantly,
multivariate analyses reveal that both empathy-related and cognitive control-related brain regions are involved in modulating
individual variations of altruistic preference, which implicate complex psychological and computational processes. Our results
provide a neurocomputational account of how people weigh between different attributes to make altruistic decisions and why
altruistic preference varies to a great extent across individuals.

Introduction
Altruistic helping behavior, i.e., sacrificing ones’ own interests to
boost others’ welfare, is a fundamental type of social behaviors in
animal and human societies (Heinsohn and Legge, 1999;
Warneken et al., 2007). It is widely seen in interpersonal interac-
tions even in situations without any opportunities for reciprocity
between strangers (Batson and Shaw, 1991; Marsh et al., 2014).
However, it is also found that people are not always willing to help
others at their own costs (Bode et al., 2015).
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On the one hand, as illustrated by the cost-reward model,
people deliberately weigh between the benefit and the cost when
deciding whether to behave altruistically (Penner et al., 2005),
and variations in such weighing processes (i.e., other-regarding
preferences) across contexts, tasks, and individuals further lead
to great variations in altruistic behaviors (Morishima et al., 2012;
Crockett et al., 2017). On the other hand, the empathy-altruism
hypothesis emphasizes that individuals with stronger empathic
concern disposition are willing to incur higher costs to help
others (Batson et al., 2007; FeldmanHall et al., 2015). Recent neu-
roimaging studies adopting various paradigms have provided
key evidence reflecting these cognitive/affective components in
the brain (Moll et al., 2006; Hare et al., 2010; FeldmanHall et al.,
2013, 2015). They identified a large neural network, including
value-related and reward-related regions, such as orbitofrontal
cortex (OFC) and ventromedial prefrontal cortex (VMPFC), and
empathy/mentalizing regions, such as temporoparietal junction
(TPJ), and anterior insular cortex (aINS), that are critically
involved in altruistic decision-making. However, because of the
lack of quantitative investigation of the underlying neural sub-
strates, it is still unclear how individuals make altruistic or selfish
decisions involving the trade-off between self-interest and other-
interest, how such decision processes are implemented in the
brain, and whether and how the cost-benefit integration (i.e., the
task-specific other-regarding preference) is linked to individuals’
dispositional personality (i.e., empathy concern).

Here, we combine a novel interpersonal helping task with
computational modeling and functional magnetic resonance
imaging (fMRI) to address these issues. First, we formally tested
whether people integrate personal costs and other’s benefits in a
simple linear fashion (Crockett et al., 2017; Gao et al., 2018) or in
a nonlinear manner suggested by studies in which participants
evaluate subjective values (SVs) of options leading to not only
monetary consequences but also other types of outcomes (e.g.,
effort and emotion; Charpentier et al., 2016; Lockwood et al.,
2017).

Second, we tested how human brain encodes personal costs
and others’ benefits. Relevant previous studies focused mainly on
the neural implementations of monetary cost-benefit calcula-
tions; the roles of these regions in encoding self-interest versus
other-interest could have been confused with their roles in proc-
essing monetary gain/loss. For instance, aINS is suggested to be
an empathy-related region to modulate altruistic behaviors
(Hein et al., 2010; Tusche et al., 2016), but the same region and
its adjacent areas are also implicated in representing monetary
cost in economic decision-making (Knutson et al., 2007;
Engelmann et al., 2017) or in representing both self-interest and
other-interest (Qu et al., 2019). It is elusive whether those identi-
fied regions (e.g., aINS) are associated with self-regarding versus
other-regarding motives or are just recruited in monetary gain/
loss processing. The current paradigm allowed us to investigate
not only the neural implementation of the cross-modality (i.e.,
monetary and physical suffering) cost-benefit calculations but
also the roles of close but different (sub)regions in processing
self-interest and/or other-interest in interpersonal interaction by
parametrically manipulating participants’ own monetary costs
and others’ physical benefits.

Third, we also examined whether and how individual differ-
ences from distinct sources jointly affect altruistic behaviors. We
employed univariate mediation analysis to establish the relation-
ship between the dispositional empathy and the task-specific
other-regarding preferences, and used multivariate intersubject
representational similarity analysis (IS-RSA) to further explore

the neural activity patterns underlying the joint modulations of
these two distinct individual variation sources on altruistic deci-
sion-making (Jordan et al., 2016).

Materials and Methods
Participants
Sample size were determined by an a priori power analysis using
GpPower which suggested that 34 participants would be required in
multiple regression analyses if we achieve 80% power to detect a “me-
dium” to “large” effect size of f2 = 0.25 at a= 0.05 (two-tailed).
Therefore, 37 right-handed undergraduate and graduate students from
Tongji University were recruited in the experiment. Four participants
were excluded because of excessive head movement (.63 mm in trans-
lation and/or.63° in rotation), leaving 33 participants for data analyses
(mean age= 21.276 1.48, ranging from 19 to 24 years; 16 females).
Participants reported no history of psychiatric, neurologic, or cognitive
disorders. Informed written consent was obtained from each participant
before the experiment. The study was conducted in accordance with the
Declaration of Helsinski and was approved by the Ethics Committee of
the School of Psychological and Cognitive Sciences, Peking University.

Design and procedures
The current study included two sessions on two separate days. On the
first day (session 1), participants came to a behavioral laboratory to com-
plete three tasks sequentially: noise rating task, noise and visual stimuli
association task and interpersonal helping task (Fig. 1A). First, partici-
pants performed the noise rating task in which they rated unpleasantness
level for a series of noise stimuli with different intensity (Fig. 1B). Since
participants would virtually not hear any noise stimuli during the inter-
personal helping task, we asked them to perform a noise and visual stim-
uli association task (Fig. 1D) to associate different levels of noise stimuli
with different visual cues before the interpersonal helping task. These
cues were supposed to activate the representation of and emotional
responses to the noise stimuli when shown in the helping task. In the
interpersonal helping task, we measured participants’ altruistic behaviors
by asking them to decide whether or not to forgo a certain amount of
money from their participation payments to prevent a stranger from
hearing unpleasant noise stimuli (Fig. 1E). In this task, we employed a
staircase procedure to measure each participant’s altruistic behavior and
calculate his/her willingness to pay (WTP) to help others for each level
of noise stimuli. Details of this staircase procedure are described in the
later design optimization section.

Three to five days after session 1, participants came to the laboratory
again (session 2) to complete in sequence the noise and visual stimuli
association task again outside the fMRI scanner and the interpersonal
helping task in the scanner. The first task aimed to let participants re-ex-
perience and re-memorize all the noise stimuli at the beginning of ses-
sion 2. For each participant, we recorded the participant’s blood
oxygenation level-dependent (BOLD) signals while he/she was perform-
ing the interpersonal helping task with a fixed, specific set of monetary
cost amount-noise unpleasantness level pairs. Here, we assumed that the
participant would equate others’ unpleasant feelings with his/her own
feelings for the noise stimuli with certain physical intensity. A total of
160 trials were included in the fMRI version of the interpersonal helping
task. Detailed descriptions of each task are presented in the following
sections.

Noise rating task
In session 1, on arriving at the laboratory and before any instructions
about the study were given, participants completed a noise rating
task in which they heard 30 clips of 1-s noise with different levels of
volume in randomized order and rated the unpleasantness for each
clip on a visual analog scale (VAS; Price et al., 1994). The maximum
intensity of the noise stimuli would generate a sound around
100 dB, and the 30 clips were controlled by an attenuation parameter
[u ; volume ¼ 1� uð Þ � 100 dB], which ranged from 0 to 0.97 with
an incremental step of 0.033. When u ¼ 0, there was no attenuation,
and the stimuli would be delivered with the maximum intensity;
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when u ¼ 1, the sound would be attenu-
ated by 100 dB, which resulted in silence.
The VAS ranged from 0 (not unpleasant at
all) to 10 (extremely unpleasant; Fig. 1B).
For each participant, we used a power
function to fit the relationships between
subjective unpleasant ratings and objective
noise intensity, and defined 10 different
levels of intensity from weakest to strong-
est with equal subjective unpleasantness
intervals (Fig. 1C). Specifically, the noise
stimuli ranged from the objective intensity
which was subjectively rated as 5 (level 1)
to 9.5 (level 10) with an incremental step of
0.5. Therefore, although participants’ sub-
jective unpleasantness feelings about the
noise stimuli may increase nonlinearly
(exponentially) with objective noise inten-
sity, their subjective unpleasantness feel-
ings about the 10 selected noise stimuli
would increase linearly from level 1 to level
10. The 10 selected noise stimuli would be
used in the following tasks. Notably, partic-
ipants did not know any information about
upcoming tasks before they finished the
noise rating task. Thus, their subjective
feelings about the noise stimuli would not
be biased by other irrelevant information
or motives. Noise stimuli were delivered by
AKG K271 MKII headphones, and con-
trolled by software Presentation (Neuro-
behavioral System Inc.).

Noise and visual stimuli association task
Since participants would virtually not hear
any noise stimuli during the interpersonal
helping task, we asked them to perform a
noise and visual stimuli association task to as-
sociate different levels of noise stimuli with
different visual cues before the helping task.
In this way, we could use the conditioned vis-
ual cues to denote different selected noise
stimuli in the interpersonal helping task. As
individuals’ subjective perceptions of unpleas-
antness for the same noise stimuli could vary
from person to person, we defined 10 levels of

Figure 1. Experimental design and behavioral results. A, The procedure of the experiment. Participants performed the tasks
in two sessions on two separate days. In session 1, participants performed the noise rating task, noise and visual stimuli associ-
ation task, and interpersonal helping task outside fMRI scanner. In session 2, participants performed the noise and visual stimuli
association task again outside scanner and the interpersonal helping task in the scanner. B, The procedure of noise rating task.
Participants rated unpleasantness for noise stimuli with different levels of intensity on a VAS. C, We estimated a power function
(red curve) with individual’s unpleasantness rating data, and then selected 10 levels of noise stimuli specific for each participant
from mild to extremely unpleasant with equal interval of subjective unpleasantness difference between adjacent levels. D, The
procedure of noise and visual stimuli association task. Each of the 10 selected noise stimuli was associated with each of 10 dif-
ferent visual cues (i.e., blue trumpets). Visual stimuli with more trumpets correspond to noise stimuli with higher unpleasant-
ness score. E, The procedure of interpersonal helping task. In each trial, participants decided whether or not to forgo a certain

/

amount of money to prevent the partner from receiving a
clip of noise stimuli with a certain level of unpleasantness.
Each trial began with a sentence “Pairing, please wait!” on
the screen for 1–7 s. Then, the participant’s own portrait
and a faceless silhouette representing the partner, together
with participants’ cost amount and a visual cue represent-
ing the noise unpleasantness level the partner will receive
were presented on the screen for 3 s. Then, the question
“Whether to donate?,” together with “yes” and “no”
options, was presented in the lower part of the screen. The
participant had to make his/her choice within 3-s time limi-
tation. F, Behavioral results in interpersonal helping task for
both sessions. Left panel, WTP is depicted as a function of
recipients’ (partners’) noise unpleasantness level in session
1. Error bars indicate SEM, CNY, Chinese Yuan. Right panel,
Helping rate is depicted as a function of benefactors’ (partici-
pants’) cost amount level and recipients’ (partners’) noise
unpleasantness level across all the trials over all participants
in session 2. Each cell represents one specific cost amount
level-noise unpleasantness level pairing condition.
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noise stimuli for each participant based on his/her own ratings to make
sure that different participants have the same subjective feelings of
unpleasantness for the same level of noise stimuli. We used a classical con-
ditioning procedure to associate the set of 10 noise stimuli selected in
noise rating task specifically to each participant with 10 visual cues (Fig.
1D). The associated visual stimuli were pictures with different numbers of
blue trumpet icons. Participants were explicitly informed that a larger
number of trumpets (ranging from 1 to 10) indicate a noise stimulus with
greater volume. The purpose of this association was to activate partici-
pants’ experience of the noise stimulus when they saw a visual cue in the
later interpersonal helping task. In each trial, a visual cue associated with a
specific noise unpleasantness level was presented for one second. One sec-
ond delay after that, the corresponding noise stimulus was presented to
the participant in 80% trials (paired trials), and no stimulus was presented
in the remaining 20% trials (unpaired trials). Then the participant indi-
cated whether he/she had heard the noise stimulus in that trial by selecting
“yes” or “no” within 3 s. Each pair of association repeated ten times. All
the participants performed with high accuracy in identifying paired/
unpaired trials in this task (accuracy: mean=0.99, SE=0.004).

Interpersonal helping task
In each trial of the interpersonal helping task, the participant decided
whether or not to forgo a certain amount of money from the participa-
tion payments to help one of the three anonymous partners avoid a 30-s
clip of noise stimulus. Specifically, each trial began with a warning cue to
indicate that the computer was pairing the participant with one partner,
which lasted for a randomly jittered interval (1–7 s). Then the decision-
relevant information was presented on the screen for 3 s, including the
financial cost of the participant to forgo (e.g., 1.4 CNY, with 1 CNY �
0.16 USD), the benefit for the partner (i.e., the level of noise that would
be exempted, indexed by a certain number of trumpets; ranging from 1 to
10), as well as the visual cues indicating the identities of both parties (i.e., a
portrait for the participant and a faceless silhouette for the partner; see
Fig. 1E). The participant was explicitly informed that his/her subjective
unpleasant feelings about the same noise stimulus (represented by the
number of trumpets) were the same as the matched partner, but the objec-
tive intensity of the noise stimulus associated with the same number of
trumpets could vary across individuals. Next, the participant decided
within 3 s whether to donate to his/her partner by pressing the corre-
sponding button with the right index or middle finger. If the participant
selected “yes”, he/she had decided to donate (forgo) the amount of money
as indicated in the trial so that the partner could be free from receiving
any noise stimulus. If the participant selected “no”, he/she would keep the
amount of money but the partner could be exposed to the noise stimulus
as indicated in the trial. In other words, in each trial the participant had to
weigh between his/her ownmonetary costs and the partner’s physical ben-
efits when deciding whether to help the other. Once the participant
pressed the corresponding button, the chosen option was highlighted by a
white box and this screen would last for the remainder of the 3 s. Then the
next trial began. Across different trials, both the positions of the facial por-
trait/silhouette figures and the positions of the “yes” and “no” options
were randomly predetermined by computer (Fig. 1E).

To ensure the anonymity of the task and to prevent any confounding
effects because of reputation concerns, participants were told that their
personal information (e.g., facial portraits) and decisions in each trial (i.
e., help or not to help) would not be revealed to their partners, and that
they could be paired with anyone of the three partners in each trial with-
out knowing the partner’s identity. To encourage participants to treat
each trial independently and seriously, they were also told that after
fMRI scanning, the computer would select 20 trials randomly from all
the decisions they had made in both behavioral and fMRI tasks to calcu-
late the average amount of money, which would be deducted from their
participation payments (i.e., 150 CNY). In addition, another trial would
be randomly drawn to determine whether and at what unpleasantness
level the paired partner would receive the noise stimulus according to
the participant’s decision. They were also told that the paired partner
was one of the future participants in the experiment; every participant,
as a partner for previous participants, would potentially receive a clip of
noise stimulus determined in a trial randomly selected from previous

participants’ decision pool. Since we conducted this noise stimulus selec-
tion and delivery after participants had completed the whole experiment,
they were aware of this procedure but did not know whether or not the
previous participant had helped them avoid the noise stimulation or
which noise stimulus they would receive until the very end of the experi-
ment. Thus, participants’ own decisions of whether to help future partic-
ipants would not be affected by whether or not they had been helped by
previous participants.

Design optimization
To optimize the choice options to efficiently estimate each participant’s
other-regarding preference, participants were required to perform the
interpersonal helping task in both sessions. In the first session (day 1),
participants performed the task in a behavioral laboratory. The amount
of money for each noise unpleasantness level was generated online by a
one-up-one-down staircase procedure which has been widely used in
psychophysics studies to detect individuals’ discrimination thresholds
for stimuli (García-Pérez, 1998). Specifically, each of the 10 noise
unpleasantness levels repeated 16 times so that the task included 160 tri-
als in total. If the participant was willing to pay a certain amount of
money for a certain noise unpleasantness level on trial n, the amount of
money in trial n1 1 with the same unpleasantness level was increased
by one step (i.e., k times the amount of money in trial n if the participant
did donate on trial n-1 or k times the amount difference between trial n
and n-1 at the same unpleasantness level if the participant did not donate
on trial n-1; k = 0.8 for the first 10 trials, and k= 0.5 for the last 6 trials);
if the participant was unwilling to donate on trial n, the amount of
money in trial n1 1 with the same unpleasantness level was reduced by
one step (i.e., k times the amount of money in trial n if the participant
did not donate on trial n-1 or k times the amount difference between
trial n and n-1 at the same unpleasantness level if the participant did
donate on trial n-1; k = 0.8 for the first 10 trials, and k= 0.5 for the last 6
trials). We performed logistic analyses and calculated the amount of
money the participant would donate with a probability of 0.5 for each
noise unpleasantness level, which was referred to as his/her WTP for
each noise unpleasantness level. Then we paired each participant’s
WTPs for the 10 unpleasantness levels with each of the 10 unpleasant-
ness levels to generate 100 choice events for the fMRI task in session 2.
Therefore, in session 2 in the fMRI scanner, participants performed the
interpersonal helping task with a fixed set of monetary cost amount-
noise unpleasantness level pairs, in which their behavior would not influ-
ence their subsequent options. For the fMRI task, the cost amounts were
the WTPs for the 10 unpleasantness levels based on each participant’s
own decisions in session 1. As participants usually show stronger behav-
ioral bias and smaller variances for the WTPs of extremely low (i.e., 1
and 2) and high (i.e., 9 and 10) noise unpleasantness levels, compared
with the other levels, we included fewer trials with WTPs for 1, 2, 9, and
10 noise unpleasantness levels to shorten fMRI scanning. Thus, the trials
pairing each noise unpleasantness level with WTPs for noise unpleasant-
ness levels 1, 2, 9, and 10 were presented once (40 trials in total), and the
trials pairing each noise unpleasantness level with WTPs for unpleasant-
ness levels 3–8 were presented twice (120 trials in total). By having such
orthogonal manipulations of participants’ cost amounts and partners’
noise unpleasantness levels, we could examine the behavioral and neural
effects of benefactors’ costs and recipients’ benefits on benefactors’ altru-
istic behaviors parametrically. Participants underwent the task in two
functional scanning sessions, with each session including 80 trials and
lasting around 15min.

Other details of procedure
After fMRI scanning, participants filled out postexperiment question-
naires and the balanced emotional empathy scale (BEES), which meas-
ures individuals’ dispositional empathy for others (Mehrabian, 1997).
Higher BEES score reflects a stronger trait empathic concern for others.

Behavioral data analysis
Model-free behavioral data analysis
For altruistic behaviors in the interpersonal helping task in session 1, we
first calculated each participant’s WTP for each noise unpleasantness
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level, and then tested the effect of noise unpleasantness level on WTPs
by performing a linear mixed-effects model withWTPs as the dependent
variable and noise unpleasantness level as the independent variable.
Regarding the interpersonal helping task in session 2, we performed gen-
eralized mixed-effects analyses to test the effects of cost amount level
and noise unpleasantness level on individuals’ choices. Specifically, we
took participants’ helping decisions as the dependent variable (help = 1;
no help = 0), and the cost amount level (10 levels of WTP corresponding
to 10 noise unpleasantness levels), noise unpleasantness level, and the
interaction between cost amount level and noise unpleasantness level as
predictors in the model. All the predictors were standardized before
being entered into the model. We considered participants as a random-
effect intercept term in all regression models above. We performed linear
mixed-effects analyses using the nlme and lme4 packages in R.

Model-based behavioral data analysis
To formally examine how people weigh between costs and benefits to
make altruistic decisions, we established 15 models in three model families
(F1–F3), assuming that participants contingently (F1.1–F1.5) or independ-
ently (F2.1–F2.5 and F3.1–F3.5) weighed their own costs and recipients’
benefits, either in a linear or a nonlinear manner. In model family F1, we
assumed that the sum of weights on costs and benefits equaled to 1. In
model family F2, we assumed that two independently weighting parame-
ters modulated costs and benefits. In model family F3, we assumed that,
in addition to costs and benefits, people also considered interaction
between costs and benefits, and three independently weighting parameters
modulated the three components. The models are listed below:

Model family F1 (interdependent models):
F1.1 (linear):

U M;Nð Þ ¼ �k � N � 1� kð Þ �Mð0,k,1Þ:

F1.2 (nonlinear weighting on benefits):

U M;Nð Þ ¼ �k � Na � 1� kð Þ �Mð0,k,1Þ:

F1.3 (nonlinear weighting on costs):

U M;Nð Þ ¼ �k � N � 1� kð Þ �Mb ð0,k,1Þ:

F1.4 (same nonlinear transformation on both benefits and costs):

U M;Nð Þ ¼ �k � Na � 1� kð Þ �Mað0,k,1Þ:

F1.5 (different nonlinear transformations on benefits and costs):

U M;Nð Þ ¼ �k � Na � 1� kð Þ �Mb ð0,k,1Þ:

Model family F2 (independent models):
F2.1 (linear):

UðM;NÞ ¼ �k � N �m �M:

F2.2 (nonlinear weighting on benefits):

UðM;NÞ ¼ �k � Na �m �M:

F2.3 (nonlinear weighting on costs):

UðM;NÞ ¼ �k � N �m �Mb :

F2.4 (same nonlinear transformation on both benefits and costs):

UðM;NÞ ¼ �k � Na �m �Ma:

F2.5 (different nonlinear transformations on benefits and costs):

UðM;NÞ ¼ �k � Na �m �Mb :

Model family F3 (independent and interactive models):
F3.1 (linear):

U M;Nð Þ ¼ �k � N �m �M� p � N �M:

F3.2 (nonlinear weighting on benefits):

U M;Nð Þ ¼ �k � Na �m �M� p � Na �M:

F3.3 (nonlinear weighting on costs):

U M;Nð Þ ¼ �k � N �m �Mb � p � N �Mb :

F3.4 (same nonlinear transformation on both benefits and costs):

U M;Nð Þ ¼ �k � Na �m �Ma � p � Na �Ma:

F3.5 (different nonlinear transformations on benefits and costs):

U M;Nð Þ ¼ �k � Na �m �Mb � p � Na �Mb ;

where M is the amount of monetary costs for the participant, N is the
noise unpleasantness level the partner was going to receive, and
UðM;NÞ is the SV for each choice. N = 0 had the participants made the
altruistic choice, whereas M = 0 had they made the selfish choice.
Regarding the free parameters, k represents a participant’s weight on
others’ benefits (i.e., noise unpleasantness level), m in the model families
F2 and F3 represents participant’s weight on his/her own costs, and p in
the model family F3 represents participant’s weight on the interaction
between costs and benefits. Note, we incorporated a and b in nonlinear
models to characterize the nonlinearity of the value function for benefits
and costs, respectively, where a=b equals 1 when it is a linear function,
a=b falls between 0 and 1 when it is a convex function, and a=b is
larger than 1 when it is a concave function (Charpentier et al., 2016). In
models F1.4, F2.4, and F3.4, we assumed that the same nonlinear trans-
formation (i.e., a) applied to costs and benefits; and in models F1.5,
F2.5, and F3.5, we assumed different nonlinear transformations (i.e., a
and b ) for costs and benefits.

The SV difference (DU) between altruistic and selfish choices in each
trial was entered into a softmax function to compute the probability of
choosing the altruistic choice:

P helpð Þ ¼ 1
11e�lDU

;

where l is a free temperature parameter reflecting to what extent an
individual’s decisions depend on DU.

For each model, we estimated the parameters for each participant
separately by using the MATLAB VBA-toolbox (available at http://mbb-
team.github.io/VBA-toolbox/), which employed a Variational Bayesian
analytical approach (Daunizeau et al., 2009, 2014). This iterative algo-
rithm estimates the marginal likelihood or log-evidence of the models by
using free energy as an approximation, and accounts for model complex-
ity (e.g., the number of model parameters) when evaluating the likeli-
hood of observing the participants’ choice given each model (Friston et
al., 2007; Penny, 2012). The prior distributions for k and m were
Nð0:5; 2Þ, and for a, b , and l wereNð1:5; 3Þ.

To select the best model in explaining altruistic helping behaviors,
we estimated individuals’ response data across all the trials with the 15
models and inserted the log-evidence of each model for each participant
into a group-level random-effect Bayesian model analysis (RFX-BMS;
Stephan et al., 2009). We had 15� 33= 495 model evidences (15 models,
33 participants) in total. The RFX-BMS analysis estimates exceedance
probability (xp) for each model, which quantifies the probability of a cer-
tain model that is more likely implemented than all the other models

Hu et al. · Neurocomputational Basis of Altruistic Help J. Neurosci., April 14, 2021 • 41(15):3545–3561 • 3549

http://mbb-team.github.io/VBA-toolbox/
http://mbb-team.github.io/VBA-toolbox/


based on posterior probability (i.e., expected frequency) of each model
within the model space (Rigoux et al., 2014).

We also performed cross-validation prediction analyses and model
parameter recovery to validate the winning model. To assess the predic-
tive accuracy of the models, we divided all the trials into even-numbered
and odd-numbered trials to implement cross-validation prediction anal-
yses. Specifically, for each participant, we first used even-numbered trials
to estimate model parameters, and simulated 100 sets of response data
with the estimated model parameters for the odd-numbered trials. We
measured the predictive accuracy by calculating the proportion of simu-
lated decisions that correctly predicted the observed decision for each
trial. Then, we repeated this process by estimating parameters with odd-
numbered trials and calculating the predictive accuracy for even-num-
bered trials. We computed the overall predictive accuracy by averaging
the two predictive accuracy values.

In the fMRI experiment, participants went through different individ-
ual-specific sets of monetary cost amount–noise unpleasantness level
pairings. To confirm that the winning model could reliably estimate pa-
rameters given different sets of choice, we performed parameter recovery
analysis for the winning model with each participant’s dataset separately.
Specifically, we first used each participant’s estimated parameter values
(k , a, and l ) in the winning model as true values and his/her own cost
amount-noise unpleasantness level pairing dataset to simulate 100 sets
of response data (i.e., choice). We then estimated all the parameters for
the simulated response data with the winning model, and checked the
means of the estimated values and the true values for each parameter.

fMRI data acquisition and preprocessing
We collected T2p-weighted echoplanar images (EPIs) using a GE-
MR750 3.0 T scanner with a standard head coil at Tongji University,
Shanghai, China. The images were acquired in 40 axial slices parallel to
the AC-PC line in an interleaved order, with an in-plane resolution of
3 mm� 3 mm, a slice thickness of 4 mm, an interslice gap of 4 mm, a
repetition time (TR) of 2000ms, an echo time (TE) of 30ms, a flip angle
of 90°, and a field of view (FOV) of 200 � 200 mm. We used Statistical
Parametric Mapping software SPM12 (Wellcome Trust Department of
Cognitive Neurology, London, United Kingdom), which was run
through MATLAB (MathWorks) to preprocess the fMRI images. For
each session, the first five volumes were discarded to allow for stabiliza-
tion of magnetization. For the remaining images, we first performed
slice-time correction to the middle slice, then realigned the images to
account for head movement, spatially re-sampled the images to 3� 3 �
3 isotropic voxel, normalized them to standard Montreal Neurologic
Institute (MNI) template space, and finally spatially smoothed the
images using an 8-mm full-width at half-maximal Gaussian kernel. Data
were filtered using a high-pass filter with 1/128-Hz cutoff frequency.

Overview of neuroimaging analyses
With neuroimaging analyses, we aimed to answer the questions of how
cost-benefit computation for altruistic behaviors is implemented in the
human brain, and how individual variations in altruistic behaviors
arise from the underlying neural processes. To clarify the neural
mechanisms underlying the helping behavior, we first performed gen-
eral linear model (GLM) analyses to reveal brain regions representing
SV of benefactors’ costs (SVcost), recipients’ benefits (SVbenefit), and
decision utility. To explore how individual variations in altruistic
preference originate from neural implementations of the cost-benefit
computation, we correlated neural responses of SVcost/SVbenefit with
the model derived parameter of other-regarding preference (k ) and
performed mediation analyses to further examine the relationship
between dispositional empathy, model-based other-regarding prefer-
ence, and neural responses of SVcost/SVbenefit . Since in the above analy-
ses, we revealed close but different regions implicated in different
subprocesses underlying the helping behavior, we conducted formal
analyses to test the dissociations of these regions. In the end, to pro-
vide more comprehensive evidence for the neural underpinnings of
individual differences in altruistic preference, we employed multivari-
ate analyses (i.e., IS-RSA) to test the neural substrates of general altru-
istic preference which accounts for both dispositional empathy and

model-based other-regarding preference. In the following sections,
we provide more details for each analysis.

GLM analyses
We built GLM 1 to identify brain regions responding to the SV of bene-
factors’ costs (SVcost) and recipients’ benefits (SVbenefit) and GLM 2 to
identify brain regions whose activities were associated with decision
utility.

GLM 1
GLM 1 was built to identify brain regions representing the SV of bene-
factors’ costs (SVcost) and recipients’ benefits (SVbenefit). Specifically, we
derived and standardized the SVcost and SVbenefit from the winning model
(i.e., model F1.2) based on behavioral model comparison results. Then,
we regressed BOLD signal onto GLMs which included the regressors
corresponding to the onsets of the offer presentation (i.e., cost amount
and noise unpleasantness level). These onsets were modulated by two
parametric regressors: the SVcost and SVbenefit . We turned off orthogonal-
ization when estimating the model and allowed the two parametric mod-
ulators to compete for variance. The duration for this event was equal to
the time form onsets of offer presentation to the time point at which the
participant pressed the button. GLM 1 also had three regressors of no in-
terest: the onsets corresponding to the fixation screen in each trial, to left
button responses, and to right button responses. These events were mod-
eled with a duration of 0 s.

GLM 2
GLM 2 was built to identify brain regions whose activities were associ-
ated with decision utility. We regressed BOLD signal onto GLMs con-
taining regressors corresponding to the onsets of offer presentation.
These onsets were modulated by a parametric regressor: the utility differ-
ence between the chosen choice and the unchosen choice. This event
was modeled with a duration equal to the time from onset of offer pre-
sentation to the time point at which the participant pressed the button.
GLM 2 also had three regressors of no interest: the onsets corresponding
to the fixation screen in each trial, to left button responses, and to right
button responses.

For both GLM 1 and GLM 2, regressors of interest and no interest
were convolved with a canonical hemodynamics response function
(HRF). Six rigid body parameters were also modeled as regressors of no
interest to account for head motion artifacts.

At the second level, we employed one-sample two-tail t tests to assess
the neural estimates of the SV of benefactors’ costs (in GLM 1), recipi-
ents’ benefits (in GLM 1), and decision utility (in GLM 2), respectively.
For all GLMs, we adopted a whole-brain corrected threshold [i.e., a com-
bined threshold of voxel-level p, 0.001 uncorrected and cluster-level
p, 0.05 family-wise error (FWE) correction] unless a special note. For
GLM 1, we also fed contrast images for SVcost and SVbenefit into a second-
level one-way ANOVA design to perform conjunction analysis to assess
shared neural regions in representing the two dimensions of SV. As we
were interested in regions [i.e., anterior cingulate cortex (ACC), INS,
and right TPJ], which had been implicated in altruistic behaviors in prior
studies, we performed region of interest (ROI) conjunction analysis and
reported the results with a threshold of p, 0.05 small volume correction
(SVC) at the voxel level within ROI masks for ACC, INS, or right TPJ,
respectively. We used WFU PickAtlas toolbox which is implemented in
SPM 12 to generate the ROI masks (Maldjian et al., 2003, 2004). ACC
mask included bilateral anterior cingulum regions in AAL atlas, INS
mask included bilateral insular and bilateral inferior frontal operculum
regions in AAL atlas, and right TPJ mask included right inferior parietal,
supramarginal, and superior temporal regions in AAL atlas (Tzourio-
Mazoyer et al., 2002).

Mediation analysis
Following the procedure recommended by Preacher and Hayes (2004),
we extracted average parametric estimates of SVbenefit within a 3-mm
edge cube around the peak voxel of vaINS/mINS for each participant,
and constructed a model which took the parametric estimates in vaINS/
mINS as a mediator variable, BEES scores as the predictor variable, and
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other-regarding preference (k ) as the outcome variable (MM 1). We
performed statistical analyses by using a bootstrapping procedure to test
the mediation effect in small samples (Preacher and Hayes, 2004).

Analyses for dissociative functions between insular subregions
To formally test functional dissociation between close but distinct
regions in aINS [i.e., vaINS/mINS and dorsal aINS/inferior frontal gyrus
(daINS/IFG)], we separately extracted parametric estimates of SVcost and
SVbenefit from right vaINS/mINS and right daINS/IFG by calculating av-
erage parametric estimates of SVcost and SVbenefitwithin the right daINS/
IFG mask (i.e., dorsal anterior insular cluster in Kelly et al. (2012)’ tem-
plate combined with IFG in AAL template) and the right vaINS/mINS
mask (i.e., middle insular cluster in Kelly and colleagues’ template) for
each participant. Repeated-measures ANOVA were performed to test
the effects in parametric estimates of SVcost and SVbenefit between daINS/
IFG and vaINS/mINS. We calculated the correlations between other-
regarding preferences and (1) parametric estimates of SVcost in vaINS/
mINS and in daINS/IFG, and (2) parametric estimates of SVbenefit in
vaINS/mINS and in daINS/IFG, respectively. Correlations were com-
pared using two-tail correlation comparison analysis (Steiger, 1980;
Diedenhofen and Musch, 2015).

IS-RSA
We performed an IS-RSA using the NLTools package (http://github.
com/ljchang/nltools). As a multivariate-based analytical approach, IS-
RSA has been demonstrated to be a powerful tool in detecting brain
responses associated with individual variations in complex psychologi-
cal processes encompassing multidimensional features (van Baar et al.,
2019). Here, IS-RSA allowed us to examine neural basis of individual
variations in general altruistic preference that accounted for both
measures of dispositional empathy and task-specific other-regarding
preferences simultaneously. We first created a two-dimension general
altruistic preference space which consists of z-scored BEES score (i.e., a
measure of dispositional empathy) and z-scored log-transformed k
(i.e., a measure of task-specific other-regarding preferences), and estab-
lished a parameter representational dissimilarity matrix (RDM) of the
general altruistic preference by calculating the Euclidean distance in
this space across all pairs of participants. Next, we obtained the para-
metric contrast maps of SVcost and SVbenefit in GLM 1 for each partici-
pant, and extracted the multivoxel patterns from each contrast map
within the four hypothesis-driven ROIs [i.e., bilateral ventral aINS
(vaINS) adjacent to middle INS (mINS), daINS, TPJ, and dorsolateral
PFC (DLPFC)] based on a 50-parcel whole-brain parcellation from
Neurosynth database (http://neurovault.org/collections/2099/). Given
the results of univariate mediation analysis, we combined the vaINS
with mINS region in the parcellation template for the first ROI. With
the two different masks in INS (i.e., vaINS/mINS vs daINS), we tested
whether the functional dissociation in INS identified in univariate anal-
yses can be confirmed by multivariate analyses. Although in our uni-
variate analyses, we only observed a significant effect in the dorsal part
of TPJ [i.e., right inferior parietal lobe (rIPL)] and we did not observe
any significant effect in DLPFC, these two regions have been repeatedly
implicated in altruistic behavior in previous studies (Morishima et al.,
2012; Hutcherson et al., 2015; Tusche et al., 2016; Crockett et al., 2017).
Therefore, we also included bilateral TPJ and bilateral DLPFC in the
IS-RSA analyses to explore their roles in altruistic preferences with
multivariate analyses. Then, we created a neural RDM by calculating
the pairwise correlation dissimilarity of these neural patterns between
each pair of participants. Finally, we calculated Spearman rank correla-
tions between the parameter RDM and the neural RDM for each ROI,
respectively. Statistical significance was obtained via the permutation
test (i.e., 5000 times of permutation) with Bonferroni corrections
accounting for the number of ROIs.

Data and code availability
The data required to reproduce the results, the thresholded statistical
parametric maps, and the custom code to implement analyses in this pa-
per are available at https://osf.io/h75cd.

Results
Altruistic helping decreases with benefactors’ costs and
increases with recipients’ benefits
Our model-free analyses of both sessions consistently suggested
that individuals’ altruistic behaviors decreased with benefactors’
own costs and increased with recipients’ benefits. Specifically, to
test the effects of recipients’ benefits on benefactors’ WTPs to
help recipients in session 1, we performed linear mixed-effects
modeling with participants’WTPs for each noise unpleasantness
level as a dependent variable, noise unpleasantness levels as a
predictor. The linear mixed-effects regression revealed a strong
fixed effect of noise unpleasantness level on participants’ WTPs
(b = 7.02, SE= 0.54, df= 296, t = 12.81, p, 0.001), suggesting
that participants’ WTPs increased with the level of noise inten-
sity (Fig. 1F, left panel).

For the behavioral data in session 2, we performed a general-
ized mixed-effect analysis to test the effects of cost amount level
(i.e., 10 levels of WTP corresponding to 10 noise unpleasant-
ness levels based on each participant’s decisions in session 1)
and noise unpleasantness level on participants’ altruistic behav-
iors in session 2 (i.e., 1 = help; 0 = not help). Results showed
that participants were more likely to help when the noise
inflicted on the recipient became more unpleasant, ORE (odds
ratio estimate) = 2.51, 95% confidence interval (CI) [2.25,2.80],
whereas they were less likely to help while the cost amount
increased, ORE= 0.08, 95% CI [0.06,0.11] (Table 1; Fig. 1F,
right panel). The analysis did not yield a statistically significant
effect for the interaction between the two predictors on the
choice behaviors, ORE= 0.87, 95% CI [0.61,1.23].

Integration of benefactors’ costs with nonlinearly
transformed recipients’ benefits
We performed model-based analyses to formally examine how
the participants evaluated and weighed between their own mone-
tary costs and others’ potentially physical benefits in making
their final decisions. The analyses suggested that people integrate
their personal monetary costs with nonlinearly transformed
recipients’ benefits; this finding addressed the first question of
the current study regarding whether people apply a nonlinear
algorithm to make altruistic decisions especially when costs and
benefits are in different modalities.

Specifically, we constructed 15 models in three model fami-
lies. The 15 models assumed that participants contingently
(F1.1–F1.5) or independently (F2.1–F2.5 and F3.1–F3.5) weighed
their own costs and recipients’ benefits, either in a linear or a
nonlinear manner. The winning model was the model (model
F1.2) which assumed that individuals would contingently inte-
grate their own costs and others’ benefits with nonlinear weight-
ing on others’ benefits:

Table 1. Mixed-effects model results of behavioral data in fMRI interpersonal
helping task in session 2

Logistic model

Variable B (SE) ORE (95% CI) p value

Cost amount level (D) �2.49 (0.14) 0.08 (0.06, 0.11) ,0.001
Noise unpleasantness level (N) 0.92 (0.06) 2.51 (2.25, 2.80) ,0.001
Interaction DpN �0.14 (0.18) 0.87 (0.61, 1.23) 0.42
Intercept �4.51 (0.34) 0.01 (0.01, 0.02) ,0.001
LL �1636
BIC 3314
Marginal R2 0.72

ORE, odds ratio estimate; LL, log-likelihood; BIC, Bayesian information criterion.
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U M;Nð Þ ¼ �k � Na � 1� kð Þ �Mð0,k , 1Þ;

whereM is the amount of monetary cost for the participant, and
N is the noise unpleasantness level the partner is going to receive,
UðM;NÞ is the SV for each choice.

Bayesian model comparison showed that the winning model
(model F1.2) has the highest exceedance probability (xp= 0.71;
Fig. 2A). The model F1.2 is more likely implemented than all the
other models with a probability of 71%. Consistently, model
comparisons with Bayesian information criterion (BIC), which
punish model complexity to avoid overfitting also favored this
model over other models (Table 2). The exceedance probabilities
of all the models are listed in Table 2. Given that both our
model-free and model-based analyses suggested that including
interaction between costs and benefits did not improve model
performance in explaining the helping behavior, we did not
include the interaction term between cost amount and noise
unpleasantness level in GLMs for the following fMRI analyses.

To test the relationship between participants’ other-regarding
preferences and their dispositional empathy, we calculated each
participant’s BEES score as a measure of dispositional empathy.
We derived the weighting parameter (i.e., k ) which captures par-
ticipants’ task-specific other-regarding preferences from the win-
ning model (model F1.2). Since the distribution of k was
positively skewed (skewness = 1.97), we used log-transformed k ,
which was normally distributed (skewness = 0.30), as the mea-
sure of task-specific other-regarding preferences in the following
analyses. Pearson correlation analysis revealed a significant cor-
relation between log-transformed k and BEES score across par-
ticipants (r= 0.38, df = 32, p=0.03; Fig. 2B). Since the Pearson
correlation between k and BEES score was also significant
(r=0.37, df = 32, p=0.04), the log transformation of k did not
change the significance of our results. Given that individuals
with greater k value will concern more about others’ benefits (i.
e., higher weight), these findings provide evidence that greater
computational weighting on others’ benefits may be driven by
stronger dispositional empathy.

Furthermore, we performed a series of additional analyses to
validate our model performance. First, to test predictive accuracy
of the winning model (model F1.2), we performed cross-valida-
tion prediction analyses by estimating model parameters with
each participant’s behaviors in half trials and predicting his/her
behaviors in the other half. Two-tail one sample t test revealed
that the predictive accuracy of this model (mean 6 SE, 0.843 6
0.013) was significantly higher than chance level (i.e., 0.5,
t(32) = 26.14, p, 0.001).

We also applied the same analyses to other models. One sam-
ple t tests revealed that predictive accuracies for all the remaining
models were higher than chance level (ps, 0.001; Fig. 2C). As
the predictive accuracy for each model conformed to normal dis-
tribution (Kolmogorov–Smirnov tests of predictive accuracy, p
values for all models. 0.1), we performed a 5 (nonlinearity: lin-
ear vs nonlinearity on benefits vs nonlinearity on costs vs same
nonlinearity on benefits and costs vs different nonlinearity on
benefits and costs)� 3 (model families: F1 vs F2 vs F3) ANOVA
on model predictive accuracy. We only revealed a significant
main effect of nonlinearity (F(4,128) = 12.99, p, 0.001, h 2

partial =
0.29). Post hoc analyses suggested that predictive accuracy of
models with nonlinearly transformed benefit (mean 6 SE, 0.843
6 0.013), models with nonlinearly transformed cost (0.850 6
0.013), and models with different nonlinearly transformed bene-
fit and cost (0.850 6 0.013) were significantly higher in predic-
tive accuracy than linear models (0.8086 0.014, ps, 0.001) and

models with the same nonlinearly transformed benefit and cost
(0.8126 0.017, ps, 0.01), but there was no significant difference
between models with nonlinearly transformed benefit, models
with nonlinearly transformed cost, and models with different
nonlinearly transformed benefit and cost (ps. 0.1). Although
these three types of nonlinear models predicted choice behavior
equally well, only the nonlinear model with single weighting pa-
rameter and nonlinearly weighting on others’ benefits (model
F1.2) outperformed all the other models in model comparison
analyses (i.e., exceedance probability and BIC). These findings
provide evidence suggesting that when benefactors decide
whether to carry out costly helping behaviors to others, they will
integrate their monetary costs with nonlinearly transformed
recipients’ physical benefits.

Second, we applied the same models in behavioral analyses of
session 2 to participants’ altruistic behaviors in session 1 to
examine the test-retest reliability of the interpersonal helping
task. The findings that model comparisons with BIC favoring
model F1.2 over the other models for data in session 1 (Table 2)
and the estimated parameters of model F1.2 in session 1 and ses-
sion 2 were significantly correlated with each other (Fig. 2D)
demonstrated the consistency of behaviors across sessions.
Third, to confirm that the winning model could reliably estimate
parameters given different individual-specific datasets, we per-
formed parameter recovery analysis for the winning model with
each participant’s dataset separately. The results suggested that
the parameters in model F1.2 could be recovered reliably with
individual-specific datasets in the current study (Fig. 2E).

Together, computational modeling results suggested that par-
ticipants were more likely to integrate their own monetary costs
with nonlinearly transformed others’ physical benefits in the
altruistic helping situation.

Neural valuations of benefactors’ costs and recipients’
benefits
To answer the question how human brain implements the com-
putation of costs and benefits to make the help decision, we con-
structed GLM 1 to test brain regions associated with cost and
benefit valuation, and GLM 2 to test brain regions associated
with decision utility underlying the helping behavior. The analy-
ses of GLM 1 first suggested that dorsal ACC (dACC) and rIPL
are involved in representing self-interest and other-interest in an
abstract manner. In search of regions involved in the valuation
of benefactors’ costs and recipients’ benefits, we calculated SV of
benefactors’ cost and recipients’ benefit for each trial based on
the winning model (model F1.2) as follows:

SVcost ¼ ð1� kÞ �M

SVbenefit ¼ k � Na:

Correlating these SVs with BOLD signals in GLM 1, we found
that the neural activity in dACC, and bilateral daINS/IFG were
positively associated with SVcost, whereas the neural activity in
rIPL was positively associated with SVbenefit (Fig. 3; Table 3). All
these results above and hereafter were reported using a whole-
brain corrected threshold (i.e., a combined threshold of voxel-
level p, 0.001 uncorrected and cluster-level p, 0.05 FWE cor-
rection) unless specifically noted. No region showed significant
negative association with SVcost or SVbenefit.

Then, we performed a conjunction analysis to assess regions
whose activity were engaged in evaluating both SVcost and
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Figure 2. Computational modeling results. A, Model comparison results. Model F1.2 (interdependent-and-nonlinear weight of recipients’ benefits model) outperforms than all the other
models in the RFX-BMS analysis. Model F1.2 has the highest exceedance probability (xp = 0.71), suggesting that the probability that model F1.2 is more likely implemented than all the other
models is 71%. B, Correlation between BEES score (dispositional empathy) and log-transformed k in model F1.2 (other-regarding preferences). C, Bar plots show that cross-validation predic-
tion accuracies are significantly higher than chance level (i.e., 0.5) for all the 15 models of interest. Error bars indicate SEM. D, Scatter plots for correlations between estimated parameters with
model F1.2 in the two sessions. E, Model parameters recovered from simulated response data for each participant; 100 sets of response data were simulated with model F1.2, each participant’s
specific cost amount–noise unpleasantness level pairing choice set, and his/her own best-fitting parameters. Then, model parameters in model F1.2 were estimated with these 100 sets of
response data for each participant’s cost amount–noise unpleasantness level pairing choice set, and averaged across the 100 sets of simulated parameters. Scatter plots show the association
between the averaged simulated parameters (y-axis) and the estimated parameters fitted by observed behavioral data (x-axis) across all the participants. Dashed blue lines are the diagonal
lines. Each dot represents one participant; pppp, 0.001.
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SVbenefit. We observed that dACC [peak MNI: 9, 38, 19; T = 3.31,
k = 2, p(SVC-FWE)= 0.013, SVC] and rIPL [peak MNI: 54, �58,
49; T = 4.15, k = 20, p(SVC-FWE)= 0.001, SVC] showed signifi-
cant overlaps in neural valuation of SVcost and SVbenefit (Fig. 3A,
B, right panels). Contrasts of “SVcost . SVbenefit” and “SVbenefit .
SVcost” did not reveal any region surviving a whole-brain cor-
rected threshold or SVC.

Neural substrates of decision utility and decision difficulty
underlying altruistic helping behaviors
In GLM 2, we identified regions encoding decision utility (Uchosen

- Uunchosen), which underlies the helping decision. Whole-brain
analysis revealed that activations in MPFC, left middle temporal
gyrus (MTG), left angular gyrus and superior occipital gyrus
(SOG) were positively associated with the decision utility, and
that activations in middle cingulate cortex/supplementary motor
area (MCC/SMA), left IFG, right DLPFC, and left angular gyrus
were negatively associated with decision utility (Fig. 4; Table 3).

Consistent with prior studies, the finding that the activation
in MPFC, especially VMPFC, was positively associated with de-
cision utility confirmed the role of VMPFC in representing SV
of decision (Levy and Glimcher, 2012; Bartra et al., 2013;
Clithero and Rangel, 2014). Given that smaller decision utility
increases decision difficulty, the findings that activations in
cognitive control-related regions, including MCC, IFC, and
DLPFC, were negatively associated with deci-
sion utility was also in line with previous stud-
ies suggesting that more extensive cognitive
resources are recruited in more difficult deci-
sions to resolve conflicts between choices with
smaller utility differences (Zaki et al., 2010;
Watanabe et al., 2014).

It is plausible that the regions identified in
GLM 1 were also associated with decision util-
ity or decision difficulty, but we did not observe
any significant effect of decision utility or deci-
sion difficulty on dACC, rIPL as well daINS/
IFG [all ps(FWE-SVC). 0.05]. Therefore, we
suggested that dACC, rIPL, and daINS/IFG
identified in the previous GLM analyses were
not involved in representing decision utility or
difficulty.

Valuation of others’ benefits in INS
mediates the effect of dispositional empathy
on task-specific other-regarding preferences
The next question we are interested in is how
individual differences in altruistic preference
arise from neural processing of different
attributes in helping decisions. We first exam-
ined whether and how neural valuations of
personal costs and other’s benefits were
related to dispositional empathy and model-
based other-regarding preference. Mediation
analyses revealed that vaINS/mINS mediated
the effect of dispositional empathy on cost-
benefit calculation during altruistic decision-
making. Specifically, we first investigated the
relationship between participants’ task-spe-
cific other-regarding preferences (log-trans-
formed k derived from the winning model)
with neural responses of SVcost and SVbenefit in
three hypothesis-driven ROIs (i.e., bilateral

Figure 3. Parametric analysis results in GLM 1. dACC (A) showed positive associations with SVcost (blue region), and
rIPL (B) showed positive associations with SVbenefit (orange region). ROI conjunction analysis revealed that part of dACC
and rIPL are associated with both SVcost and SVbenefit . Parametric estimate values corresponding to each of the two
modulators (SVcost and SVbenefit) were extracted from dACC (A, right panel) and rIPL (B, right panel) identified in GLM
1 conjunction analysis. The parametric estimate values were the averaged values across the voxels in a within 3-mm
edge cube and centered at the peak coordinate of each region (ACC: 9, 38, 19; rIPL: 54, �58, 49). C, Bilateral daINS/
IFG showed positive associations with SVcost . Neural results were thresholded at voxel- wise p, 0.001 uncorrected
and cluster-wise FWE corrected p, 0.05. Error bars indicate SEM.

Table 2. Quality of model fits for computational models of altruistic decision-
making in sessions 1 and 2

Model Description
Parameters
per subject

Exceedance
probability (session 2)

BIC
(session 2)

BIC
(session 1)

F1.1 k ,l 2 0 3708 7697
F1.2 k , a, l 3 0.71 3223 6690
F1.3 k , b , l 3 0.29 5269 6892
F1.4 k , a,l 3 0.0007 8470 14,367
F1.5 k , a, b , l 4 0 4328 8090
F2.1 k , m,l 3 0.0005 4456 7843
F2.2 k , m, a, l 4 0 3369 7719
F2.3 k , m, b , l 4 0.0001 5140 11,841
F2.4 k , m, a, l 4 0 6211 12,620
F2.5 k , m, a, b , l 5 0 5802 11,881
F3.1 k , m, p, l 4 0 4042 7076
F3.2 k , m, p, a, l 5 0 3537 6971
F3.3 k , m, p, b , l 5 0.0001 5307 12,009
F3.4 k , m, p, a, l 5 0 6379 12,788
F3.5 k , m, p, a, b , l 6 0 5970 12,049

BIC, Bayesian information criterion. BIC scores are summed across subjects. Model F1.2 was favored across
both sessions. All models have an inverse temperature parameter l . k , relative weighting parameter for
others’ benefits (altruistic preference) in models F1.1– F1.5; k , weighting parameter for others’ benefits in
models F2.1–F2.5 and F3.1–F3.5; m, weighting parameter for one’s own costs in models F2.1–F2.5 and
F3.1–F3.5; p, weighting parameter for interaction between benefit and cost in models F3.1–F3.5; a, power
exponent which modulates the nonlinearity of others’ benefits; b , power exponent which modulates the
nonlinearity of one’s own costs.
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INS, TPJ, and DLPFC) based on a 50-parcel whole-brain par-
cellation from Neurosynth database (http://neurovault.org/
collections/2099/). We combined vaINS with daINS and mINS
region in the parcellation template to form a mask covering the
whole INS. Only neural responses of SVbenefit in right vaINS/mINS
[peak MNI: 45, 8, �5, p(SVC-FWE), 0.05] were correlated with
participants’ other-regarding preferences. Whole-brain analyses fur-
ther confirmed stronger signal of SVbenefit in right vaINS/mINS
(peak MNI: 45, 8, �5, T=4.87, cluster size = 108) in participants
weighing more on other’s benefits (i.e., with stronger other-regard-
ing preferences, voxel-level p, 0.001 uncorrected and cluster-level
p=0.078 FWE correction; Fig. 5A,B).

Given that our behavioral findings have revealed an associa-
tion between dispositional empathy and other-regarding prefer-
ences, we further examined whether vaINS/mINS served as a
neural underpinning of the effect of dispositional empathy on
other-regarding preferences. Regressional analyses revealed a sig-
nificant path c of 0.38 (p=0.031), a significant path b of 0.58
(p, 0.001), and a marginally significant path a of 0.32 (p=0.068;
Fig. 5C). Since the path a was only marginally significant, we
used a bootstrapping procedure to test the significance of the
indirect effect (i.e., a� b), which is widely used for testing indi-
rect effect when any path in the mediation model (MM) is
not significant (Preacher and Kelley, 2011; Rucker et al.,
2011; Hayes, 2017). The bootstrapping procedure showed a
significant indirect effect a� b (indirect effect: 0.252, 95%
CI [0.018,0.625], with 20,000 bootstrapping; Preacher and
Hayes, 2004). Given that path c’ was no longer significant
(c’ = 0.19, p. 0.1) after the mediation of activity in vaINS/
mINS, the positive relationship between dispositional em-
pathy and task-specific other-regarding preferences was
fully mediated by the neural signals of SVbenefitin vaINS/
mINS (Fig. 5C; Table 4). In addition, we built up five con-
trol MMs (MM 2–6) to test other possibilities of mediation
pathways between these three variables, and found that
none of the indirect effects in these models was significant
(Table 4). Taken together, these findings suggested that
vaINS/mINS is a critical region linking dispositional empa-
thy with cost-benefit integration during altruistic decision-
making.

Functional dissociation of vaINS/mINS and daINS/IFG in
altruistic decision-making
Findings above strongly indicated that the two adjacent but dif-
ferent regions in INS are involved in distinct functions underly-
ing the altruistic helping behavior. In particular, right vaINS/
mINS signals of SVbenefit was associated with other-regarding
preferences across individuals, while bilateral daINS/IFG were
more engaged in encoding SVcost. By mapping both subregions
(Fig. 6A) to a template that disentangles insular subregions (k= 3
solutions; Fig. 6B; Kelly et al., 2012), we showed that right vaINS/
mINS was mainly located in the ventral anterior and middle sub-
region of the insular template, whereas right daINS/IFG was
partly located in the dorsal anterior subregion of the insular tem-
plate and extended to IFG (Fig. 6C).

We performed the following two post hoc analyses to formally
test the functional dissociation between the two subregions of
INS. To this end, we extracted parametric estimates of SVcost and
SVbenefit separately from right daINS/IFG and right vaINS/mINS
for each participant. We used the middle insular cluster in Kelly
et al. (2012)’ template as the mask for vaINS/mINS, and com-
bined the dorsal anterior insular cluster in Kelly et al. (2012)’
template with IFG in AAL template as the mask for daINS/IFG.
For the first analysis (i.e., parametric analysis), we showed a sig-
nificant region-by-SV interaction in the parametric effects
(F(1,32) = 5.61, p=0.02, h

2
partial = 0.15); while the parametric esti-

mates of SVcost were significantly higher in right daINS/IFG
(0.031 6 0.008) than in right vaINS/mINS (0.007 6 0.009,
p, 0.001), the parametric estimates of SVbenefit in right daINS/
IFG (0.011 6 0.012) were not different from those in right
vaINS/mINS (0.017 6 0.010, p=0.55; Fig. 6D). This interaction
effect was further supported by post hoc analyses showing that
only the parametric estimates of SVcost in right daINS/IFG was
significantly higher than 0 (0.031 6 0.008, 95% CI [0.014,0.048],
t(32) = 3.71, p , 0.001), which was not the case in right vaINS/
mINS (0.007 6 0.009, 95% CI [–0.012,0.026], t(32) = 0.77, p=
0.45). Neither parametric of SVbenefit in right daINS/IFG
(0.011 6 0.012, 95% CI [–0.014,0.036], t(32) = 0.89, p=0.38) nor
parametric of SVbenefit in vaINS/mINS (0.0176 0.010, 95% CI [–
0.003,0.036], t(32) = 1.76, p = 0.09) was different from 0.

Table 3. Results of whole-brain parametric analysis of fMRI data in GLM 1 and GLM 2

Peak MNI coordinates

Regions Laterality x y z Max T value Cluster size (k)

GLM 1: positive association with SVcost
dACC R 9 38 22 6.57 633
daINS/IFG R 48 17 1 5.68 286

L �33 17 �23 9.48 233
Positive association with SVbenefit

rIPL R 48 �58 55 5.90 245
MOG R 18 �103 �5 8.77 445

L �24 �97 �2 5.62 234
GLM 2: positive association with decision utility: Uchosen - Uunchosen

MPFC L �12 47 34 6.63 1289
MTG L �57 �40 �11 7.95 772
Angular gyrus L �60 �58 25 8.16 676
SOG R 21 �97 7 8.20 5165

Negative association with decision utility: Uchosen - Uunchosen
MCC/SMA L �6 17 46 7.58 283
IFG L �45 44 4 6.58 297
DLPFC R 48 35 31 5.75 137
Angular gyrus L �33 �58 37 5.33 145

dACC, dorsal anterior cingulate cortex; daINS, dorsal anterior insular; IFG, inferior frontal gyrus; rIPL, right inferior parietal lobe; MOG, middle occipital gyrus; MPFC, medial prefrontal cortex; MTG, middle temporal gyrus; SOG,
superior occipital gyrus; MCC, middle cingulate cortex; SMA, supplementary motor area; DLPFC, dorsolateral prefrontal cortex. Results are thresholded with voxel-level p, 0.001 uncorrected and cluster-level whole-brain
p, 0.05 FWE correction.
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Concerning the second analysis (i.e.,
correlation analysis), although the cor-
relation comparison suggested that the
difference between the correlation of
other-regarding preferences (i.e., log-
transformed k ) with SVbenefit signal in
vaINS/mINS and that in daINS/IFG
did not reach significance (Z = 0.60,
p = 0.273; Steiger, 1980; Diedenhofen
and Musch, 2015), the value of the cor-
relation coefficient between other-regard-
ing preferences (i.e., log-transformed k )
and SVbenefit signal in vaINS/mINS (r =
0.45, p= 0.009) was higher than that in
daINS/IFG (r = 0.37, p= 0.03, not signifi-
cant if Bonferroni multiple comparison
correction was applied; see Fig. 6E, right
panel). On the other hand, if parametric
estimates of SVbenefit were extracted from
the peak coordinates of right daINS/IFG
(MNI coordinates: 48, 17, 1) and right
vaINS/mINS (MNI coordinates: 45, 8,
�5) identified in previous analyses, the
correlation between other-regarding pref-
erences (i.e., log-transformed k ) and
SVbenefit signal was significantly stronger
in vaINS/mINS (r = 0.64, p, 0.001) than
in daINS/IFG (r = 0.41, p= 0.02; Z= 2.27,
p= 0.023), which confirmed the functional
dissociation of daINS/IFG and vaINS/
mINS in processing benefits. These results
also suggested that the null neural effect of
SVbenefit in vaINS/mINS at group level was
because of the modulation of other-regard-
ing preference across different participants.
In other words, people who are more altru-
istic will show a more positive neural effect
of SVbenefit in vaINS/mINS. In addition,
other-regarding preferences was not corre-
lated with parametric estimates of SVcost in
vaINS/mINS (r = �0.025, p=0.89) or in
daINS/IFG (r = –0.12, p=0.50; Fig. 6E, left
panel). Together, these findings provided
convergent evidence for the functional dis-
sociation of vaINS/mINS and daINS/IFG in
altruistic decision-making.

Brain activity patterns reflect individual
variations in general altruistic
preference
Furthermore, in addition to univariate
mediation analyses, we employed multi-
variate analyses (i.e., IS-RSA) to explore
the relationship between neural encodings
of cost and benefit and individual differen-
ces in altruistic preference. To account for
individual differences in both dispositional
empathy and context-specific other-regarding tendency, we con-
structed a two-dimension general altruistic preference space with
normalized BEES score and normalized log-transformed k , and
tested whether or not multivariate neural activity patterns of
SVcost and SVbenefit in candidate regions (i.e., bilateral vaINS/
mINS, daINS, TPJ, and DLPFC) were involved in representing

individual variations of this general altruistic preference. Here,
we consider the general altruistic preference as a more compre-
hensive measure of altruistic preferences than each single measure,
as it encompasses altruistic preference strength information from
both long-term personality traits and task-specific preferences,
and also reflects the relationship between these two measures
across individuals. For instance, task-specific other-regarding

Figure 4. Parametric analysis results in GLM 2. A, MPFC, including VMPFC, showed positive associations with utility differ-
ence between chosen and unchosen choice. B, MCC/SMA, left IFG and right DLPFC showed negative associations with utility
difference between chosen and unchosen choice. Neural results were thresholded at voxel-wise p, 0.001 uncorrected and
cluster-wise FWE corrected p, 0.05.

Figure 5. Mediation analysis results. A, Whole-brain analyses showed the association between neural representation of
recipients’ benefits in vaINS/mINS with log-transformed k in model F1.2 (other-regarding preferences). B, Scatter plot for
the correlation between parametric estimates of recipients’ benefits in vaINS/mINS and log-transformed k . Parametric esti-
mates in vaINS/mINS was averaged values across the voxels in a region within 3-mm edge cube and centered at the peak
coordinates (45, 8, �5). C, Path diagram shows the mediation pathway. The predictor variable (BEES scores) shown on the
left predicts neural representation of recipients’ benefits in vaINS/mINS (path a for the mediator variable). The mediator vari-
able (vaINS/mINS) predicts individuals’ other-regarding preferences (log-transformed k ) after controlling for individuals’ em-
pathy disposition (path b). The effect of dispositional empathy on other-regarding preferences after controlling for the
mediator variable (path c’) is not significant any more, suggesting that neural estimates of vaINS/mINS fully mediate the
effect of dispositional empathy on other-regarding preferences. Path coefficients are labeled on the lines. Bootstrapping anal-
ysis suggested that this indirect effect is significant after 20,000 bootstraps.
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preferences are more closely related to disposi-
tional empathy for individuals whose positions
are closer to the diagonal line in the general
altruistic preference space than those who are
farther away to the diagonal line. We imple-
mented IS-RSA in the following procedure.
First, we generated a parameter RDM by calcu-
lating the Euclidean distance in this general
altruistic preference space across all pairs of par-
ticipants. This parameter RDM could be taken
as a measure of similarity in general altruistic
preference between different individuals. Next,
we created, respectively, a neural RDM with
respect to target regions by calculating the corre-
lation between multivoxel patterns of SVcost and
SVbenefit across all pairs of participants. Finally,
we performed a Spearman rank correlation
between these two RDMs (Fig. 7).

Results revealed significant intersubject
similarity effects in bilateral vaINS extending
to mINS for processing recipients’ benefits
(Spearman’s r = 0.183; ppermutation = 0.007)
and in DLPFC for processing benefactors’
costs (Spearman’s r = 0.175; ppermutation =
0.008), both regions survived Bonferroni cor-
rection (Fig. 7; Table 5). None of these effects
were significant in daINS or TPJ (ppermutation

. 0.1). On the one hand, these findings were
consistent with our univariate analyses which
suggested that responses to recipients’ benefits
in vaINS/mINS, but not responses to recipi-
ents’ benefits/benefactors’ costs in daINS/IFG,
were associated with dispositional empathy
and model-based other-regarding preference.
On the other hand, these findings extended
univariate analyses by showing responses to
benefactors’ costs in DLPFC was also critical
for the altruistic preference.

To test potential hemispheric effects for
the regions which had survived Bonferroni
correction, we reproduced the analysis by
applying the same procedure on the left or
right part of vaINS/mINS and DLPFC. We
found that the effects of recipients’ benefits in
both left (Spearman’s r = 0.155; ppermutation =
0.007) and right vaINS/mINS (Spearman’s
r = 0.172; ppermutation = 0.018) were significant,
and that the effect of benefactors’ costs was
significant only in right DLPFC (Spearman’s
r = 0.162; ppermutation = 0.006), not in left
DLPFC (Spearman’s r = 0.052; ppermutation =
0.41). Taken together, these findings

Table 4. Mediation pathways construction and mediation analysis results for MM 1–6

Independent variable Mediator variable Outcome variable 95% CI indirect effect

MM 1 BEES score vaINS/mINS estimates of SVbenef it Other-regarding preferences 0.018 to 0.625
MM 2 BEES score Other-regarding preferences vaINS/mINS estimates of SVbenefit �0.001 to 0.083
MM 3 Other-regarding preferences BEES score vaINS/mINS estimates of SVbenefit �0.006 to 0.018
MM 4 Other-regarding preferences vaINS/mINS estimates of SVbenefit BEES score �0.002 to 0.083
MM 5 vaINS/mINS estimates of SVbenefit Other-regarding preferences BEES score �1.073 to 4.610
MM 6 vaINS/mINS estimates of SVbenefit BEES score Other-regarding preferences �0.277 to 2.664

The significant mediation model is highlighted in bold font.

Figure 6. Differentiation between right vaINS/mINS and daINS/IFG. A, Neural representations of recipients’ benefits
in vaINS/mINS (yellow) mediate the effect of dispositional empathy on other-regarding preferences, and activity in
daINS/IFG (cyan) is associated with SVcost. B, Insular subregions template (k = 3 solutions) from Kelly et al. (2012):
dorsal anterior insular (green), ventral anterior and middle insular (red), and posterior insular (blue). C, Mapping
vaINS/mINS (yellow) and daINS/IFG (cyan) onto Kelly’s insular subregions template suggests that vaINS/mINS is mainly
located in the vaINS and mINS, and daINS/IFG is mainly located in the dorsal anterior part of insular and IFG. D,
Activity in daINS/IFG showed significant associations with SVcost; and, none of activity of SVcost in vaINS/mINS, activity
of SVbenefit in daINS/IFG or in vaINS/mINS was significant from 0, pppp, 0.001. E, Scatter plots for the correlations
between log-transformed k and parametric estimates of SVcost in vaINS/mINS and daINS/IFG (left panel), and scatter
plots for the correlations between log-transformed k and parametric estimates of SVbenefit in vaINS/mINS and daINS/
IFG (right panel). The correlation coefficient of SVcost was not significant for both vaINS/mINS and daINS/IFG (left
panel), and the correlation coefficient of SVbenefit was significant for vaINS/mINS but not for daINS/IFG (right panel).
The parametric estimate values for vaINS/mINS were the averaged values across the mINS template in Kelly et al.
(2012); and the parametric estimate values for daINS/IFG were the averaged values across a cluster combining the an-
terior dorsal INS in Kelly et al. (2012) and the IFG in AAL templates. If parametric estimates of SVbenefit were extracted
from the peak coordinates of right daINS/IFG (MNI coordinates: 48, 17, 1) and right vaINS/mINS (MNI coordinates: 45,
8,�5) identified in previous analyses, the correlation coefficient between other-regarding preferences (i.e., log-trans-
formed k ) and SVbenefit signal was significantly stronger in vaINS/mINS (r = 0.64, p, 0.001) than in daINS/IFG (r
= 0.41, p= 0.02; Z= 2.27, p= 0.023). Whole-brain neural results were thresholded at voxel-wise p, 0.001 uncor-
rected and cluster-wise FWE corrected p, 0.05. Error bars indicate SEM.
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confirmed the functional dissociation between
different subregions in INS with multivariate
analyses, and indicated that neural activity pat-
terns of SVcost in right DLPFC and activity pat-
terns of SVbenefit in bilateral vaINS/mINS were
more similar between individuals who exhibited
similar general altruistic preference than those
who differed in general altruistic preference.

Discussion
In this study, we provide a neurocomputational
account of how benefactors weigh different
attributes (i.e., one’s own costs and others’ bene-
fits) to make altruistic decisions. Combining a
novel task with model-based fMRI analyses, we
clarify the algorithms of cost-benefit calculation
underlying altruistic behaviors, the neural imple-
mentations of such calculation, and the neural
basis of individual variations in altruistic prefer-
ences. Our findings implicate critical roles of a
wide range of brain regions in altruistic deci-
sion-making and address how personality traits
(i.e., dispositional empathy) and cognitive proc-
esses (i.e., cost-benefit calculation) interact to
contribute to altruistic behaviors.

Our study generalizes the integration with
nonlinear transformations in non-social deci-
sion-making (Park et al., 2011; Charpentier et
al., 2016; Chong et al., 2017) to social decision-
making and extends algorithms of altruistic deci-
sion-making from linear integration (Morishima
et al., 2012; Crockett et al., 2014; Hutcherson et
al., 2015) to integration with nonlinear transfor-
mations. Our findings contribute to our under-
standings of altruistic behaviors in at least
following three ways. First, in previous studies
which employed similar paradigms and the
modeling approach (Crockett et al., 2014, 2017),
participants were confronted with traded-offs
between how much reward they gained and how
much pain others received (i.e., a self-gain
framework). However, in real-life situations,
people often weigh between how much the per-
sonal costs to take and how much benefits others get when mak-
ing altruistic decisions (i.e., a self-loss framework). In the current
study, we set up a self-loss context (i.e., benefactors bear costs to
benefit others) to minimize the discrepancy between laboratory
manipulations and real-life problems. Second, previous studies
either focused on linear models (Crockett et al., 2014, 2017) or
held an assumption that all the participants integrate costs and
benefits in a parabolic discounting model (Lockwood et al.,
2017), ignoring the variability in the nonlinearity of the integra-
tion mechanisms across individuals. Here, we freely estimate the
nonlinearity of weighting on benefactors’ costs and/or recipients’
benefits to allow for variations in these parameters across indi-
viduals. Third, although both empathy concern and computa-
tional processes are suggested to be crucial to altruistic behaviors
(Hein et al., 2010; Hutcherson et al., 2015), previous studies did
not provide direct evidence concerning how empathy concern
influences valuations and cost-benefit computations (Crockett et
al., 2014, 2017; Lockwood et al., 2017). In the current study, we
fill in this gap by demonstrating the contribution of trait

empathy to altruistic preferences and by clarifying the potential
neural pathways underlying this effect with both univariate and
multivariate fMRI analyses.

In the current study, we consider the weighting parameter
(i.e., k ) as the measure of altruistic preferences in a similar way
as previous studies (Crockett et al., 2014, 2017; Lockwood et al.,
2017), with greater k reflecting stronger concerns for others’

Figure 7. Illustration of the IS-RSA. A, Procedure of performing IS-RSA. First, we created a parameter RDM, which
measured the dissimilarity across participants in general altruistic preference that was calculated by the Euclidean
distance between each pair of participants in z-scored BEES (a measure of dispositional empathy) and z-scored log-
transformed k (a measure of task-specific altruistic preference) driven from the winning model (also see the scatter
plot showing the relationship between the two measures; each dot represents the data of a single participant).
Next, we built a neural RDM for each of the hypothesized ROIs (here we used bilateral vaINS extending to mINS as
an example), which was measured by the correlation distance between the multivoxel patterns in each ROI of SVcost
(or SVbenefit) of each pair of participants. Last, we calculated the Spearman rank-order correlation between these two
RDMs and implemented a permutation test with Bonferroni correction to confirm the statistical significance.
Notably, neural RDMs shown here were based on parametric contrasts map of SVcost. Multivoxel patterns (heatmaps
in gray scale) shown here were only for illustration. B, ROIs used in IS-RSA. ROI masks were defined based on a
whole-brain parcellation given a meta-analytic functional coactivation map of the Neurosynth database (http://
neurovault.org/collections/2099/). RDM, representational dissimilarity matrix; SV, subjective value; sbj, subject; BEES,
balanced emotional empathy scale; daINS, dorsal anterior insular; mINS, middle insular; vaINS, ventral anterior insu-
lar; TPJ, temporoparietal junction; DLPFC, dorsolateral prefrontal cortex.

Table 5. Results of ROI-based IS-RSA

Hemisphere ROI

Spearman’s rho (ppermutation)

SVcost SVbenefit

Bilateral vaINS 1 mINS �0.025 (0.777) 0.183 (0.007)*
daINS �0.002 (0.989) 0.026 (0.603)
TPJ �0.001 (0.988) 0.057 (0.199)
DLPFC 0.175 (0.008)* 0.032 (0.499)

ROI masks were defined based on a whole-brain parcellation given a meta-analytic functional coactivation
map of the Neurosynth database (http://neurovault.org/collections/2099/). ROI, region of interest; SV, subjec-
tive value; vaINS, ventral anterior insular; mINS, middle insular; daINS, dorsal anterior insular; TPJ, temporo-
parietal junction; DLPFC, dorsolateral prefrontal cortex. *Regions which survived Bonferroni-correction (i.e.,
ppermutation , 0.013), and the corresponding statistic information are in bold font..
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welfare. The power exponent (i.e., a) further differentiates indi-
viduals based on the magnitude of marginal utility of altruistic
behaviors. Such a differentiation provides us with a new way to
examine individuals’ altruistic preferences. One might argue that
biased perceptions of noise stimuli (Shepard, 1978) and mone-
tary magnitude (Namboodiri et al., 2014; Pardo-Vazquez et al.,
2019) will render the observed integration of nonlinearly trans-
formed attributes unreliable, and these confounding effects may
not be easily addressed by our current design. Nevertheless, our
findings highlight the importance of employing a nonlinear algo-
rithm to examine cost-benefit integration of different dimensions
of information underlying social decision-making.

Our model-based neuroimaging analyses further contribute
to our understandings of neurocomputational basis underlying
altruistic behaviors. First, our results suggest critical roles of
dACC and rIPL in representing self-interest motives and other-
regarding motives across different modalities. Second, univariate
mediation analyses and multivariate IS-RSA provide convergent
evidence for differentiating the roles of close but different subre-
gions in INS underlying the helping behavior. Third, the IS-RSA
further extend univariate analyses by revealing the role of
DLPFC in altruistic preference and reconciling conflicts regard-
ing the role of DLPFC in empathy-driven altruistic behaviors.
We discuss these aspects in more detail in following sections.

First, the engagement of dACC and rIPL in evaluating bene-
factors’ costs and recipients’ benefits largely replicate our previ-
ous findings that dorsal part of MPFC encodes self-interest
motives and rIPL encodes other-regarding motives when partici-
pants making altruistic decisions under a risk-taking context
(Hu et al., 2017). Importantly, conjunction results in the current
study suggest domain-general roles of dACC and rIPL in encod-
ing both self-regarding and other-regarding motives. These find-
ings are consistent with several lines of research which suggest a
domain-general role of dACC in commonly encoding informa-
tion of risk (Xue et al., 2009; Hu et al., 2017), reward (Lockwood
et al., 2016), and pain (Singer and Lamm, 2009; Lamm et al.,
2011; Engen and Singer, 2013) for both oneself and others. As
rIPL is involved in a variety of non-social and social cognitive
functions, including mathematical calculation, salience process-
ing, perspective taking, and empathy (Pinel et al., 2004; Kahnt et
al., 2014; Tusche et al., 2016; Igelström and Graziano, 2017), the
findings here about rIPL can be explained by its role in mathe-
matical calculation or salience processing for encoding personal
costs (Pinel et al., 2004; Kahnt and Tobler, 2013) and in repre-
senting vicarious mental states for other’s benefits (Lamm et al.,
2011; Tusche et al., 2016). It is highly likely that dACC and rIPL
work in the common currency neural system which implicates
identical neural valuation processes across social and non-social
decisions (Ruff and Fehr, 2014).

Second, both univariate mediation analyses and multivariate
IS-RSA clarify the critical role of vaINS/mINS in linking different
sources of altruistic preferences (e.g., task-specific other-regard-
ing preferences and dispositional empathy concern). These
observations are in line with the view that middle and ventral
anterior insular is a well-suited interface between direct and vi-
carious experiences (Craig, 2008) and supports the empathic
responses for others and other social-emotional processing dur-
ing interpersonal interactions (Chang et al., 2013; Gao et al.,
2018). On the contrary to vaINS/mINS, daINS/IFG, an adjacent
but different subregion of aINS, is found to be involved in evalu-
ating personal costs, rather than reflecting individual variations
in altruistic preferences as vaINS/mINS. This observation indi-
cates the role of daINS/IFG in goal-directed cognition and self-

interests representations (Dosenbach et al., 2006; Knutson et al.,
2007; Eckert et al., 2009; Engelmann et al., 2017). Increasing
potential loss may enhance daINS/IFG activity to recruit more
attention resources (Nelson et al., 2010; Chang et al., 2013) to
process individuals’ own interests (Droutman et al., 2015;
Engelmann et al., 2017). Our paradigm allows us to clearly differ-
entiate the roles of adjacent but different subregions of INS in
distinct cognitive/affective subfunctions, and reconcile previous
mixed evidence about the role of aINS underlying complex social
behaviors.

Last but not least, IS-RSA analyses suggest that neural activity
patterns of personal costs in DLPFC reflect individual variations
in general altruistic preference. Given the assumption that partic-
ipants in similar positions of the general altruistic preference
space evaluate personal costs or others’ benefits in similar ways,
regions (i.e., vaINS/mINS and DLPFC) showing similar activity
patterns are engaged in these processes. Recent studies suggest
that DLPFC, as a cognitive control region (Miller and Cohen,
2001; Buckholtz and Marois, 2012), serves to modulate selfish
motives and other-regarding motives (Knoch et al., 2006; Ruff et
al., 2013; Zhu et al., 2014; Nihonsugi et al., 2015), and to con-
struct moral values in interpersonal interactions (Crockett et al.,
2017). However, it is still controversial as to what extent DLPFC
is engaged in empathy-driven altruistic behaviors given that
previous univariate findings were inconsistent regarding the
association between DLPFC activity in altruistic behaviors and
dispositional empathy (FeldmanHall et al., 2015; Crockett et al.,
2017). Our multivariate analyses add new evidence to clarify the
role of DLPFC in altruistic behaviors by highlighting that indi-
viduals with similar neural activity patterns representing bene-
factors’ costs in this region exhibit similar general altruistic
preference. These findings not only elucidate the critical role of
DLPFC in modulating selfish and altruistic motives in altruistic
decision-making, but also demonstrate the strength of multi-
variate analysis in clarifying the neural basis of individual varia-
tions in complex psychological and computational processes
that cannot be identified by univariate analyses.

In summary, combining a novel experimental paradigm with
computational modeling, our study sheds new light on the
understanding of altruistic decision-making by providing a neu-
rocomputational account of how different attributes are inte-
grated to support altruistic helping behaviors. Our findings
demonstrate the strength of introducing nonlinear algorithms
into the investigation of social decision-making which involves
integration of different dimensions of information. Moreover,
neuroimaging results provide a comprehensive explanation for
the underlying neural implementations by showing that dACC
and rIPL function in an extended common currency system to
subserve cost-benefit integration during altruistic decision-mak-
ing. We reconcile some conflicting suggestions concerning the
functions of aINS by revealing different roles in adjacent but dis-
tinct subregions within INS. Furthermore, multivariate fMRI anal-
yses help to elucidate the crucial roles of DLPFC in general
altruistic preference which accounts for both psychological (e.g.,
dispositional empathy) and cognitive processes (e.g., other-regard-
ing preferences). These findings have important implications for
future investigations of psychological and neurobiological bases
underlying complex interpersonal interactive behaviors.
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